Home NATURALEZA Intravenous administration of blood–brain barrier-crossing conjugates facilitate biomacromolecule transport into central nervous...

Intravenous administration of blood–brain barrier-crossing conjugates facilitate biomacromolecule transport into central nervous system

8
0


  • Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Juliano, R. L., Ming, X. & Nakagawa, O. The chemistry and biology of oligonucleotide conjugates. Acc. Chem. Res. 45, 1067–1076 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Sci. Adv. 6, eaaz8204 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Blood–brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nagata, T. et al. Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS. Nat. Biotechnol. 39, 1529–1536 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barker, S. J. et al. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood–brain barrier. Sci. Transl. Med. 16, eadi2245 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, D. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 8, 217 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nance, E., Pun, S. H., Saigal, R. & Sellers, D. L. Drug delivery to the central nervous system. Nat. Rev. Mater. 7, 314–331 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Overcoming the blood–brain barrier for gene therapy via systemic administration of GSH-responsive silica nanocapsules. Adv. Mater. 35, 2208018 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pornnoppadol, G. et al. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. Cell Chem. Biol. 31, 361–372.e368 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood–brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. 12, eaay1359 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dehouck, B. et al. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J. Cell Biol. 138, 877–889 (1997).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Boado, R. J., Lu, J. Z., Hui, E. K.-W. & Pardridge, W. M. Insulin receptor antibody–sulfamidase fusion protein penetrates the primate blood–brain barrier and reduces glycosoaminoglycans in Sanfilippo type A cells. Mol. Pharm. 11, 2928–2934 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tylawsky, D. E. et al. P-selectin-targeted nanocarriers induce active crossing of the blood–brain barrier via caveolin-1-dependent transcytosis. Nat. Mater. 22, 391–399 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tian, X. et al. On the shuttling across the blood-brain barrier via tubule formation: mechanism and cargo avidity bias. Sci. Adv. 6, eabc4397 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid β species in vivo. Nat. Commun. 11, 4052 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carbonaro, T. M. & Gatch, M. B. Neuropharmacology of N,N-dimethyltryptamine. Brain Res. Bull. 126, 74–88 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hoffman, L. M. et al. Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: a pediatric brain tumor consortium study. Child Nerv. Syst. 31, 1283–1289 (2015).

    Article 

    Google Scholar
     

  • Fouladi, M. et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J. Clin. Oncol. 29, 3529–3534 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bachy, A. et al. SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur. J. Pharmacol. 237, 299–309 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kimberly, W. T. et al. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, APH-1, and PEN-2. Proc. Natl Acad. Sci. USA 100, 6382–6387 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lu, P. et al. Three-dimensional structure of human γ-secretase. Nature 512, 166–170 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bai, X.-C. et al. An atomic structure of human γ-secretase. Nature 525, 212–217 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, G. et al. Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell 184, 521–533(2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, S., Zhou, H., Walian, P. J. & Jap, B. K. Regulation of γ-secretase activity in Alzheimer’s disease. Biochemistry 46, 2553–2563 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cook, J. J. et al. Acute γ-secretase inhibition of nonhuman primate CNS shifts amyloid precursor protein (APP) metabolism from amyloid-β production to alternative APP fragments without amyloid-β rebound. J. Neurosci. 30, 6743–6750 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dovey, H. F. et al. Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, G. et al. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat. Commun. 13, 4214 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stone, N. L., England, T. J. & O’Sullivan, S. E. A novel transwell blood brain barrier model using primary human cells. Front. Cell. Neurosci. 13, 230 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barberio, C. et al. A human-derived neurovascular unit in vitro model to study the effects of cellular cross-talk and soluble factors on barrier integrity. Front. Cell. Neurosci. 16, 1065193 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, Q. et al. An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery. Science 384, 1220–1227 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hung, G. et al. Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Nucleic Acid Ther. 23, 369–378 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J. et al. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat. Commun. 12, 3958 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mead, R. J., Shan, N., Reiser, H. J., Marshall, F. & Shaw, P. J. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 22, 185–212 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Goutman, S. A., Savelieff, M. G., Jang, D.-G., Hur, J. & Feldman, E. L. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat. Rev. Neurol. 19, 617–634 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 13, 43–47 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Borel, F. et al. Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1G93A mice and nonhuman primates. Hum. Gene Ther. 27, 19–31 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • McCampbell, A. et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J. Clin. Invest. 128, 3558–3567 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krop, I. et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J. Clin. Oncol. 30, 2307–2313 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ran, Y. et al. γ‐secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol. Med. 9, 950–966 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Haapasalo, A. & Kovacs, D. M. The many substrates of presenilin/γ-secretase. J. Alzheimers Dis. 25, 3–28 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, Y. et al. An RNA-based system to study hepatitis B virus replication and evaluate antivirals. Sci. Adv. 9, eadg6265 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nikom, D. & Zheng, S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat. Rev. Neurosci. 24, 457–473 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Chemically modified platforms for better RNA therapeutics. Chem. Rev. 124, 929–1033 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Scharner, J. & Aznarez, I. Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics. Mol. Ther. 29, 540–554 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiong, B. et al. Strategies for structural modification of small molecules to improve blood–brain barrier penetration: a recent perspective. J. Med. Chem. 64, 13152–13173 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mummery, C. J. et al. Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat. Med. 29, 1437–1447 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sarett, S. M. et al. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc. Natl Acad. Sci. USA 114, E6490–E6497 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nishina, K. et al. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing. Nat. Commun. 6, 7969 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Asami, Y. et al. Efficient gene suppression by DNA/DNA double-stranded oligonucleotide in vivo. Mol. Ther. 29, 838–847 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zou, Y. et al. Blood–brain barrier-penetrating single CRISPR–Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 8, eabm8011 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hassler, M. R. et al. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res. 46, 2185–2196 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ouellette, J. & Lacoste, B. Isolation and functional characterization of primary endothelial cells from mouse cerebral cortex. STAR Protoc. 2, 101019 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here