Home NATURALEZA Implantation of engineered adipocytes suppresses tumor progression in cancer models

Implantation of engineered adipocytes suppresses tumor progression in cancer models

25
0


  • Lin, X., Xiao, Z., Chen, T., Liang, S. H. & Guo, H. Glucose metabolism on tumor plasticity, diagnosis, and treatment. Front. Oncol. 10, 317 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635–649 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberti, M. V. & Locasale, J. W. The Warburg effect: How does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagarajan, S. R., Butler, L. M. & Hoy, A. J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab. 9, 2 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palm, W. & Thompson, C. B. Nutrient acquisition strategies of mammalian cells. Nature 546, 234–242 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeWaal, D. et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun. 9, 446 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther. 11, 1672–1682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez, L. P., Gomez de Cedron, M. & Ramirez de Molina, A. Alterations of lipid metabolism in cancer: implications in prognosis and treatment. Front. Oncol. 10, 577420 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, W. et al. Lipid metabolism in cancer: a systematic review. J. Carcinog. 20, 4 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W., Bai, L., Li, W. & Cui, J. The lipid metabolic landscape of cancers and new therapeutic perspectives. Front. Oncol. 10, 605154 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 31, 62–76 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Mason, P. et al. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS ONE 7, e33823 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guseva, N. V., Rokhlin, O. W., Glover, R. A. & Cohen, M. B. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status. Cancer Biol. Ther. 12, 80–85 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Seki, T. et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 608, 421–428 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Symonds, M. E., Aldiss, P., Pope, M. & Budge, H. Recent advances in our understanding of brown and beige adipose tissue: the good fat that keeps you healthy. F1000Res 7, F1000 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Klingenberg, M. Uncoupling protein—a useful energy dissipator. J. Bioenerg. Biomembr. 31, 419–430 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, D., Murata, Y. & Oda, S. Changes in Ucp1, D2 (Dio2) and Glut4 (Slc2a4) mRNA expression in response to short-term cold exposure in the house musk shrew (Suncus murinus). Exp. Anim. 56, 279–288 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Vimaleswaran, K. S., Radha, V., Deepa, R. & Mohan, V. Absence of association of metabolic syndrome with PPARGC1A, PPARG and UCP1 gene polymorphisms in Asian Indians. Metab. Syndr. Relat. Disord. 5, 153–162 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Tabuchi, C. & Sul, H. S. Corrigendum: signaling pathways regulating thermogenesis. Front. Endocrinol. (Lausanne) 12, 698619 (2021).

    PubMed 

    Google Scholar
     

  • Yi, D. et al. Zc3h10 acts as a transcription factor and is phosphorylated to activate the thermogenic program. Cell Rep. 29, 2621–2633.e4 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puigserver, P. & Spiegelman, B. M. Peroxisome proliferator–activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78–90 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121–135 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Kajimura, S. Promoting brown and beige adipocyte biogenesis through the PRDM16 pathway. Int. J. Obes. Suppl. 5, S11–S14 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harms, M. J. et al. PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes Dev. 29, 298–307 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. H. et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci. Transl. Med. 12, eaaz8664 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nwosu, Z. C. et al. Uridine-derived ribose fuels glucose-restricted pancreatic cancer. Nature 618, 151–158 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. K. et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Flint, J. & Shenk, T. Viral transactivating proteins. Annu. Rev. Genet. 31, 177–212 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Bates, R., Huang, W. & Cao, L. Adipose tissue: an emerging target for adeno-associated viral vectors. Mol. Ther. Methods Clin. Dev. 19, 236–249 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik, N., Kaushik, N. K., Choi, E. H. & Kim, J. H. Blockade of cellular energy metabolism through 6-aminonicotinamide reduces proliferation of non-small lung cancer cells by inducing endoplasmic reticulum stress. Biology (Basel) 10, 1088 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Targeting glucose-6-phosphate dehydrogenase by 6-AN induces ROS-mediated autophagic cell death in breast cancer. FEBS J. 290, 763–779 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Varshney, R., Dwarakanath, B. & Jain, V. Radiosensitization by 6-aminonicotinamide and 2-deoxy-d-glucose in human cancer cells. Int. J. Radiat. Biol. 81, 397–408 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Connor, R. S. et al. The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Sci. Rep. 8, 6289 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, J.-K. et al. Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres. Cancer Cell Int. 22, 309 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C.-K. et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science 363, 644–649 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Loo, S. Y. et al. Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Sci. Adv. 7, eabh2443 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manerba, M. et al. Metabolic activation triggered by cAMP in MCF-7 cells generates lethal vulnerability to combined oxamate/etomoxir. Biochim. Biophys. Acta Gen. Subj. 1863, 1177–1186 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Strobel, H. A., Gerton, G. & Hoying, J. B. Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication 13, 035022 (2021).

    CAS 

    Google Scholar
     

  • Taylor, J. et al. Generation of immune cell containing adipose organoids for in vitro analysis of immune metabolism. Sci. Rep. 10, 21104 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kir, S. & Spiegelman, B. M. Cachexia and brown fat: a burning issue in cancer. Trends Cancer 2, 461–463 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bierie, B. et al. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl Acad. Sci. USA 114, E2337–E2346 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito, Y. et al. LLGL2 rescues nutrient stress by promoting leucine uptake in ER+ breast cancer. Nature 569, 275–279 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Takaku, M., Grimm, S. A. & Wade, P. A. GATA3 in breast cancer: Tumor suppressor or oncogene? Gene Expr. 16, 163–168 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, L. et al. EEF1A2 interacts with HSP90AB1 to promote lung adenocarcinoma metastasis via enhancing TGF-β/SMAD signalling. Br. J. Cancer 124, 1301–1311 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giudici, F. et al. Elevated levels of eEF1A2 protein expression in triple negative breast cancer relate with poor prognosis. PLoS ONE 14, e0218030 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahams, A., Parker, M. I. & Prince, S. The T-box transcription factor Tbx2: its role in development and possible implication in cancer. IUBMB Life 62, 92–102 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. HOXD10 acts as a tumor-suppressive factor via inhibition of the RHOC/AKT/MAPK pathway in human cholangiocellular carcinoma. Oncol. Rep. 34, 1681–1691 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, J. W. et al. Wild-type p53 upregulates an early onset breast cancer-associated gene GAS7 to suppress metastasis via GAS7–CYFIP1-mediated signaling pathway. Oncogene 37, 4137–4150 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY) 11, 10697–10710 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Aizawa, T. et al. Cancer-associated fibroblasts secrete Wnt2 to promote cancer progression in colorectal cancer. Cancer Med. 8, 6370–6382 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, S. et al. Rac2 controls tumor growth, metastasis and M1–M2 macrophage differentiation in vivo. PLoS ONE 9, e95893 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gene Ontology Consortium et al. The gene ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).


    Google Scholar
     

  • Maddipati, R. & Stanger, B. Z. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5, 1086–1097 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekkers, J. F. et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat. Protoc. 16, 1936–1965 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picon-Ruiz, M., Marchal, J. A. & Slingerland, J. M. Obtaining human breast adipose cells for breast cancer cell co-culture studies. STAR Protoc. 1, 100197 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shalabi, S. F. et al. Evidence for accelerated aging in mammary epithelia of women carrying germline BRCA1 or BRCA2 mutations. Nat. Aging 1, 838–849 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gray, G. K. et al. A human breast atlas integrating single-cell proteomics and transcriptomics. Dev. Cell 57, 1400–1420.e7 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyitray, C. E., Chavez, M. G. & Desai, T. A. Compliant 3D microenvironment improves β-cell cluster insulin expression through mechanosensing and β-catenin signaling. Tissue Eng. Part A 20, 1888–1895 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, G. S. et al. Viscoelastic lithography for fabricating self-organizing soft micro-honeycomb structures with ultra-high aspect ratios. Nat. Commun. 7, 11269 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girgin, M. U. et al. Bioengineered embryoids mimic post-implantation development in vitro. Nat. Commun. 12, 5140 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wise, K. D. & Najafi, K. Microfabrication techniques for integrated sensors and microsystems. Science 254, 1335–1342 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Leong, T. G., Zarafshar, A. M. & Gracias, D. H. Three-dimensional fabrication at small size scales. Small 6, 792–806 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steedman, M. R., Tao, S. L., Klassen, H. & Desai, T. A. Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues. Biomed. Microdevices 12, 363–369 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kharbikar, B. N., Kumar, S. H., Kr, S. & Srivastava, R. Hollow silicon microneedle array based trans-epidermal antiemetic patch for efficient management of chemotherapy induced nausea and vomiting. In Micro + Nano Materials, Devices, and Systems Vol. 9668 (eds Eggleton, B. J. & Palomba, S.) 256–272 (SPIE, 2015).

  • Bernards, D. A. et al. Injectable devices for delivery of liquid or solid protein formulations. ACS Materials Au 3, 255–264 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kharbikar, B. N., Chendke, G. S. & Desai, T. A. Modulating the foreign body response of implants for diabetes treatment. Adv. Drug Deliv. Rev. 174, 87–113 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kharbikar, B. N., Mohindra, P. & Desai, T. A. Biomaterials to enhance stem cell transplantation. Cell Stem Cell 29, 692–721 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, L., Yuan, Y., Shayan, R., Greening, D. W. & Karnezis, T. Fat therapeutics: the clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front. Pharmacol. 11, 158 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, J. D., Dewal, R. S. & Stanford, K. I. The beneficial effects of brown adipose tissue transplantation. Mol. Aspects Med. 68, 74–81 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res. 23, 851–854 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology 156, 2461–2469 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Pogodzinski, D., Ostrowska, L., Smarkusz-Zarzecka, J. & Zysk, B. Secretome of adipose tissue as the key to understanding the endocrine function of adipose tissue. Int. J. Mol. Sci. 23, 2309 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, T. et al. Engineered adipose-derived stem cells overexpressing RXFP1 via CRISPR activation ameliorate erectile dysfunction in diabetic rats. Antioxidants 12, 171 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudolph, M. C., Wellberg, E. A. & Anderson, S. M. Adipose-depleted mammary epithelial cells and organoids. J. Mammary Gland Biol. Neoplasia 14, 381–386 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Currie, C. J., Poole, C. D. & Gale, E. A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52, 1766–1777 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Hemkens, L. G. et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52, 1732–1744 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godsland, I. F. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin. Sci. (Lond) 118, 315–332 (2009).

    PubMed 

    Google Scholar
     

  • Nasiri, A. R., Rodrigues, M. R., Li, Z., Leitner, B. P. & Perry, R. J. SGLT2 inhibition slows tumor growth in mice by reversing hyperinsulinemia. Cancer Metab. 7, 10 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chadt, A. & Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 472, 1273–1298 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kousteni, S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50, 437–443 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Schilperoort, M. et al. The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol. Med. 10, e8047 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satapati, S. et al. GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy. J. Lipid Res. 58, 1561–1578 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, H. P. et al. Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis. Mol. Cell 77, 600–617.e4 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P., Mariman, E., Renes, J. & Keijer, J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol. 216, 3–13 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Bond, S. T., Calkin, A. C. & Drew, B. G. Adipose-derived extracellular vesicles: systemic messengers and metabolic regulators in health and disease. Front. Physiol. 13, 837001 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Evaluation and optimization of differentiation conditions for human primary brown adipocytes. Sci. Rep. 8, 5304 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowell, B. B. & Flier, J. S. Brown adipose tissue, β3-adrenergic receptors, and obesity. Annu. Rev. Med. 48, 307–316 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Mirabegron displays anticancer effects by globally browning adipose tissues. Nat. Commun. 14, 7610 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Guo, Z., Tian, H. & Chen, X. Production and clinical development of nanoparticles for gene delivery. Mol. Ther. Methods Clin. Dev. 3, 16023 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265.e16 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsagkaraki, E. et al. CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nat. Commun. 12, 6931 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steele, C. B. et al. Vital signs: trends in incidence of cancers associated with overweight and obesity—United States, 2005–2014. MMWR Morb. Mortal Wkly Rep. 66, 1052–1058 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renehan, A. G., Zwahlen, M. & Egger, M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat. Rev. Cancer 15, 484–498 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Paz-Filho, G., Lim, E. L., Wong, M. L. & Licinio, J. Associations between adipokines and obesity-related cancer. Front. Biosci. (Landmark Ed.) 16, 1634–1650 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sirin, O. & Kolonin, M. G. Treatment of obesity as a potential complementary approach to cancer therapy. Drug Discov. Today 18, 567–573 (2013).

    PubMed 

    Google Scholar
     

  • Khandekar, M. J., Cohen, P. & Spiegelman, B. M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 11, 886–895 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Huffman, D. M. et al. Cancer progression in the transgenic adenocarcinoma of mouse prostate mouse is related to energy balance, body mass, and body composition, but not food intake. Cancer Res. 67, 417–424 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 72, 5198–5208 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. Y. et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2, e87489 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    PubMed 

    Google Scholar
     

  • Beloribi-Djefaflia, S., Vasseur, S. & Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M. & Veiseh, O. Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug Discov. 21, 655–675 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chendke, G. S. et al. Replenishable prevascularized cell encapsulation devices increase graft survival and function in the subcutaneous space. Bioeng. Transl. Med. 8, e10520 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kharbikar, B. N., Zhong, J. X., Cuylear, D. L., Perez, C. A. & Desai, T. A. Theranostic biomaterials for tissue engineering. Curr. Opin. Biomed. Eng. 19, 100299 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herberts, C. A., Kwa, M. S. & Hermsen, H. P. Risk factors in the development of stem cell therapy. J. Transl. Med. 9, 29 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buitinga, M. et al. Micro-fabricated scaffolds lead to efficient remission of diabetes in mice. Biomaterials 135, 10–22 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Carpenter, R. et al. Scaffold-assisted ectopic transplantation of internal organs and patient-derived tumors. ACS Biomater. Sci. Eng. 5, 6667–6678 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordeiro, P. G. Breast reconstruction after surgery for breast cancer. N. Engl. J. Med. 359, 1590–1601 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Juntunen, M. et al. Evaluation of the effect of donor weight on adipose stromal/stem cell characteristics by using weight-discordant monozygotic twin pairs. Stem Cell Res. Ther. 12, 516 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, D. T. et al. Adipose tissue stem cells for therapy: an update on the progress of isolation, culture, storage, and clinical application. J. Clin. Med. 8, 917 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • H. P. Nguyen, et al. Project ID GSE246231. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE246231 (2024).

  • Qiu, W. & Su, G. H. Development of orthotopic pancreatic tumor mouse models. Methods Mol. Biol. 980, 215–223 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenbluth, J. M. et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat. Commun. 11, 1711 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here