Home NATURALEZA Gold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at...

Gold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at primary and metastatic tumors

18
0


  • Keall, P. J. et al. Integrated MRI-guided radiotherapy—opportunities and challenges. Nat. Rev. Clin. Oncol. 19, 458–470 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jaffray, D. A. Image-guided radiotherapy: from current concept to future perspectives. Nat. Rev. Clin. Oncol. 9, 688–699 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bernstein, M. B., Krishnan, S., Hodge, J. W. & Chang, J. Y. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat. Rev. Clin. Oncol. 13, 516–524 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Senthi, S., Lagerwaard, F. J., Haasbeek, C. J. A., Slotman, B. J. & Senan, S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol. 13, 802–809 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, M. et al. Individualized adaptive stereotactic body radiotherapy for liver tumors in patients at high risk for liver damage: a phase 2 clinical trial. JAMA Oncol. 4, 40–47 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sogono, P. et al. Safety, efficacy, and patterns of failure after single-fraction stereotactic body radiation therapy (SBRT) for oligometastases. Int. J. Radiat. Oncol. Biol. Phys. 109, 756–763 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hörner-Rieber, J. et al. Long-term follow-up and patterns of recurrence of patients with oligometastatic NSCLC treated with pulmonary SBRT. Clin Lung Cancer 20, e667–e677 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ali, M. et al. The role of stereotactic ablative body radiotherapy in renal cell carcinoma. Eur. Urol. 82, 613–622 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y.-X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Siva, S. et al. Stereotactic radiotherapy and pembrolizumab for oligometastatic renal tumors: the RAPPORT trial. J. Clin. Oncol. 39, 277 (2021).

    Article 

    Google Scholar
     

  • McBride, S. et al. Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. J. Clin. Oncol. 39, 30–37 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, W. A. et al. NRG-GU012: randomized phase II stereotactic ablative radiation therapy (SABR) for patients with metastatic unresected renal cell carcinoma (RCC) receiving immunotherapy (SAMURAI). J. Clin. Oncol. 41, TPS4604 (2023).

    Article 

    Google Scholar
     

  • Katipally, R. R., Pitroda, S. P., Juloori, A., Chmura, S. J. & Weichselbaum, R. R. The oligometastatic spectrum in the era of improved detection and modern systemic therapy. Nat. Rev. Clin. Oncol. 19, 585–599 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, H., Zhang, W., Zhu, G., Xie, J. & Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Her, S., Jaffray, D. A. & Allen, C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv. Drug Deliv. Rev. 109, 84–101 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ni, K. et al. Synergistic checkpoint-blockade and radiotherapy–radiodynamic therapy via an immunomodulatory nanoscale metal–organic framework. Nat. Biomed. Eng. 6, 144–156 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bonvalot, S. et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin. Cancer Res. 23, 908–917 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • NBTXR3 crystalline nanoparticles and radiation therapy in treating randomized patients in two arms with soft tissue sarcoma of the extremity and trunk wall. https://clinicaltrials.gov/study/NCT02379845

  • Detappe, A. et al. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J. Control. Release 238, 103–113 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lux, F. et al. AGuIX® from bench to bedside—transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br. J. Radiol. 92, 20180365 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radiosensitization of multiple brain metastases using AGuIX gadolinium based nanoparticles (NANO-RAD). https://clinicaltrials.gov/study/NCT02820454

  • Cui, L. et al. Radiosensitization by gold nanoparticles: will they ever make it to the clinic? Radiother. Oncol. 124, 344–356 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moloudi, K. et al. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1886 (2023).

  • Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, X., Du, B. & Zheng, J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 14, 874–882 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, Y., Yu, M. & Zheng, J. Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. Nat. Nanotechnol. 18, 637–646 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schwartz-Duval, A. S. et al. Intratumoral biosynthesis of gold nanoclusters by pancreatic cancer to overcome delivery barriers to radiosensitization. ACS Nano 18, 1865–1881 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Luo, D. et al. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small 15, 1900968 (2019).

    Article 

    Google Scholar
     

  • Jia, T.-T. et al. Atomically precise gold–levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 13, 8320–8328 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Broekgaarden, M. et al. Surface functionalization of gold nanoclusters with arginine: a trade-off between microtumor uptake and radiotherapy enhancement. Nanoscale 12, 6959–6963 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Astorgues-Xerri, L. et al. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev. 40, 307–319 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, R. et al. Prognostic significance of galectin-1 expression in patients with cancer: a meta-analysis. Cancer Cell Int. 18, 108 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, S.-Y., Yen, S.-L., Huang, C.-C. & Huang, E.-Y. Galectin-1 is a poor prognostic factor in patients with glioblastoma multiforme after radiotherapy. BMC Cancer 18, 105 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariño, K. V., Cagnoni, A. J., Croci, D. O. & Rabinovich, G. A. Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat. Rev. Drug Discov. 22, 295–316 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Le, Q.-T. et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J. Clin. Oncol. 23, 8932–8941 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, F.-T. & Rabinovich, G. A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rabinovich, G. A. & Toscano, M. A. Turning ‘sweet’ on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cedeno-Laurent, F. & Dimitroff, C. J. Galectin-1 research in T cell immunity: past, present and future. Clin. Immunol. 142, 107–116 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nambiar, D. K. et al. Galectin-1–driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance. J. Clin. Investig. 129, 5553–5567 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nambiar, D. K. et al. Galectin-1 mediates chronic STING activation in tumors to promote metastasis through MDSC recruitment. Cancer Res. 83, 3205–3219 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mo, R., Jiang, T. & Gu, Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. Int. Ed. 53, 5815–5820 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Luo, Z. et al. From aggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J. Am. Chem. Soc. 134, 16662–16670 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brewer, L. R., Corzett, M. & Balhorn, R. Protamine-induced condensation and decondensation of the same DNA molecule. Science 286, 120–123 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Koo, A.N. et al. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem. Commun. (Camb.) 6570–6572 (2008).

  • Dutta, K., Das, R., Medeiros, J. & Thayumanavan, S. Disulfide bridging strategies in viral and nonviral platforms for nucleic acid delivery. Biochemistry 60, 966–990 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • An, S. et al. Single-component self-assembled RNAi nanoparticles functionalized with tumor-targeting iNGR delivering abundant siRNA for efficient glioma therapy. Biomaterials 53, 330–340 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, S. C. Dysregulation of glutathione synthesis in liver disease. Liver Res. 4, 64–73 (2020).

    Article 

    Google Scholar
     

  • Ding, Y., Dai, Y., Wu, M. & Li, L. Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chem. Eng. J. 426, 128880 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-D. et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33, 4628–4638 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, J. H. et al. Highly excretable gold supraclusters for translatable in vivo raman imaging of tumors. ACS Nano 17, 2554–2567 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ookhtens, M., Hobdy, K., Corvasce, M. C., Aw, T. Y. & Kaplowitz, N. Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process. J. Clin. Investig. 75, 258–265 (1985).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, Y. & Pu, K. Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv. Biosyst. 2, 1700262 (2018).

    Article 

    Google Scholar
     

  • Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol. Ther. 21, 1919–1929 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lei, Y. et al. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 8, 15130 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darragh, L. B. et al. A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC. Nat. Cancer 3, 1300–1317 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ito, K. et al. Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. Angiogenesis 14, 293–307 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barabas, K., Milner, R., Lurie, D. & Adin, C. Cisplatin: a review of toxicities and therapeutic applications. Vet. Comp. Oncol. 6, 1–18 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Perše, M. Cisplatin mouse models: treatment, toxicity and translatability. Biomedicines 9, 1406 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKibbin, T. et al. Mannitol to prevent cisplatin-induced nephrotoxicity in patients with squamous cell cancer of the head and neck (SCCHN) receiving concurrent therapy. Support. Care Cancer 24, 1789–1793 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • De Felice, F. et al. Survival and toxicity of weekly cisplatin chemoradiotherapy versus three-weekly cisplatin chemoradiotherapy for head and neck cancer: a systematic review and meta-analysis endorsed by the Italian Association of Radiotherapy and Clinical Oncology (AIRO). Crit. Rev. Oncol. Hematol. 162, 103345 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • de Sousa, L. G. & Ferrarotto, R. Pembrolizumab in the first-line treatment of advanced head and neck cancer. Expert Rev. Anticancer Ther. 21, 1321–1331 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burtness, B. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394, 1915–1928 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiao, X.-W. et al. The evolving landscape of PD-1/PD-L1 pathway in head and neck cancer. Front. Immunol 11, 1721 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dogan, V., Rieckmann, T., Münscher, A. & Busch, C.-J. Current studies of immunotherapy in head and neck cancer. Clin. Otolaryngol. 43, 13–21 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tao, Y. et al. Pembrolizumab versus cetuximab concurrent with radiotherapy in patients with locally advanced squamous cell carcinoma of head and neck unfit for cisplatin (GORTEC 2015-01 PembroRad): a multicenter, randomized, phase II trial. Ann. Oncol. 34, 101–110 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tolerance and efficacy of pembrolizumab or cetuximab combined with RT in patients with locally advanced HNSCC (PembroRad). https://clinicaltrials.gov/study/NCT02707588

  • Study of pembrolizumab (MK-3475) or placebo with chemoradiation in participants with locally advanced head and neck squamous cell carcinoma (MK-3475-412/KEYNOTE-412). https://clinicaltrials.gov/study/NCT03040999

  • Study to compare avelumab in combination with standard of care chemoradiotherapy (SoC CRT) versus SoC CRT for definitive treatment in patients with locally advanced squamous cell carcinoma of the head and neck (JAVELIN HEAD AND NECK 100). https://clinicaltrials.gov/study/NCT02952586

  • Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Daguenet, E. et al. Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br. J. Cancer 123, 339–348 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishiga, Y. et al. Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect. Nat. Cancer 3, 1351–1366 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brooks, E. D. & Chang, J. Y. Time to abandon single-site irradiation for inducing abscopal effects. Nat. Rev. Clin. Oncol. 16, 123–135 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Torrejon, D. Y. et al. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov. 10, 1140–1157 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bonvalot, S. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 20, 1148–1159 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Gold-nanocluster-mediated delivery of siRNA to intact plant cells for efficient gene knockdown. Nano Lett. 21, 5859–5866 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mudedla, S. K., Singam, E. R. A., Balamurugan, K. & Subramanian, V. Influence of the size and charge of gold nanoclusters on complexation with siRNA: a molecular dynamics simulation study. Phys. Chem. Chem. Phys. 17, 30307–30317 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee, M.-Y. et al. Target-specific gene silencing of layer-by-layer assembled gold–cysteamine/siRNA/PEI/HA nanocomplex. ACS Nano 5, 6138–6147 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chien, C.-T. et al. Co-caged gold nanoclusters and methyl motifs lead to detoxification of dendrimers and allow cytosolic access for siRNA transfection. J. Mater. Chem. B 2, 6730–6737 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song, C. W., Kim, M.-S., Cho, L. C., Dusenbery, K. & Sperduto, P. W. Radiobiological basis of SBRT and SRS. Int. J. Clin. Oncol. 19, 570–578 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lynch, C., Pitroda, S. P. & Weichselbaum, R. R. Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol. 25, e352–e362 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis. 14, 679 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arina, A. et al. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 10, 3959 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gough, M. J. & Crittenden, M. R. The paradox of radiation and T cells in tumors. Neoplasia 31, 100808 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dovedi, S. J. et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res. 23, 5514–5526 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116–1127 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jonker, D. J. et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med. 357, 2040–2048 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Boettcher, M. & McManus, M. T. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell 58, 575–585 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here