Home NATURALEZA Enabling next-generation anaerobic cultivation through biotechnology to advance functional microbiome research

Enabling next-generation anaerobic cultivation through biotechnology to advance functional microbiome research

2
0


  • Hungate, R. E., Smith, W. & Clarke, R. T. Suitability of butyl rubber stoppers for closing anaerobic roll culture tubes. J. Bacteriol. 91, 908–909 (1966).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu. Rev. Microbiol. 71, 711–730 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, M. D. et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812–826 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, G. R., Macfarlane, G. T. & Cummings, J. H. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 65, 103–111 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holdeman, L. V., Good, I. J. & Moore, W. E. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31, 359–375 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamoto, M. et al. Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 54, 877–883 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwiertz, A. et al. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst. Appl. Microbiol. 25, 46–51 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, A. W. & Hoyles, L. Human microbiome myths and misconceptions. Nat. Microbiol. 8, 1392–1396 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lagier, J. C. et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185–1193 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahi, P., Prakash, O. & Shouche, Y. S. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI–TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front. Microbiol. 7, 1359 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afrizal, A. et al. Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 30, 1630–1645 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuichi, M. et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 633, 878–886 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hitch, T. C. A. et al. Broad diversity of human gut bacteria accessible via a traceable strain deposition system. Preprint at bioRxiv https://doi.org/10.1101/2024.06.20.599854 (2024).

  • Liu, C. et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome 9, 119 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorbara, M. T. et al. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28, 134–146 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wylensek, D. et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 11, 6389 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zenner, C. et al. Early-life immune system maturation in chickens using a synthetic community of cultured gut bacteria. mSystems 6, e01300-20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. J. et al. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution. Cell Host Microbe 32, 1853–1867 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hitch, T. C. A. et al. Recent advances in culture-based gut microbiome research. Int. J. Med. Microbiol. 311, 151485 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Martiny, A. C. The ‘1% culturability paradigm’ needs to be carefully defined. ISME J. 14, 10–11 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rodriguez Del Rio, A. et al. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 626, 377–384 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, A. M. & Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 17, 48 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanco-Miguez, A. et al. Extension of the Segatella copri complex to 13 species with distinct large extrachromosomal elements and associations with host conditions. Cell Host Microbe 31, 1804–1819 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Q. et al. Ecological dynamics of Enterobacteriaceae in the human gut microbiome across global populations. Nat. Microbiol. 10, 541–553 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afrizal, A. et al. Anaerobic single-cell dispensing facilitates the cultivation of human gut bacteria. Environ. Microbiol. 24, 3861–3881 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. 41, 1424–1433 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, P. et al. High-throughput anaerobic screening for identifying compounds acting against gut bacteria in monocultures or communities. Nat. Protoc. 19, 668–699 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sanders, J. G. et al. A low-cost genomics workflow enables isolate screening and strain-level analyses within microbiomes. Genome Biol. 23, 212 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terekhov, S. S. et al. Ultrahigh-throughput functional profiling of microbiota communities. Proc. Natl Acad. Sci. USA 115, 9551–9556 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watterson, W. J. et al. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. eLife 9, e56998 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellais, S. et al. Species-targeted sorting and cultivation of commensal bacteria from the gut microbiome using flow cytometry under anaerobic conditions. Microbiome 10, 24 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauvert, C. maldipickr: dereplicate and cherry-pick mass spectrometry spectra. https://doi.org/10.32614/cran.package.maldipickr (2023).

  • Helleckes, L. M. et al. From frozen cell bank to product assay: high-throughput strain characterisation for autonomous design–build–test–learn cycles. Microb. Cell Fact. 22, 130 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aranda-Diaz, A. et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota. Cell Host Microbe 30, 260–272 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, A. G. et al. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell 185, 3617–3636 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldman, S. L. et al. Culture-enriched community profiling improves resolution of the vertebrate gut microbiota. Mol. Ecol. Resour. 22, 122–136 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rettedal, E. A., Gumpert, H. & Sommer, M. O. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun. 5, 4714 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Berg, N. I. et al. Emergent survival and extinction of species within gut bacterial communities. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591619 (2024).

  • Wornell, K. et al. High-throughput method for novel medium development for culture of anaerobic gut bacteria. Curr. Protoc. 2, e463 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koblitz, J., Reimer, L. C., Pukall, R. & Overmann, J. Predicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets. Preprint at bioRxiv https://doi.org/10.1101/2024.08.12.607695 (2024).

  • Koblitz, J. et al. MediaDive: the expert-curated cultivation media database. Nucleic Acids Res. 51, D1531–D1538 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Blount, Z. D., Barrick, J. E., Davidson, C. J. & Lenski, R. E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489, 513–518 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riedel, T. et al. Genome resequencing of the virulent and multidrug-resistant reference strain Clostridium difficile 630. Genome Announc. 3, e00276-15 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Bayona, L. & Comstock, L. E. Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio 10, e01762-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripathi, S. et al. Randomly barcoded transposon mutant libraries for gut commensals I: strategies for efficient library construction. Cell Rep. 43, 113517 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davey, L. E. et al. A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat. Microbiol. 8, 1450–1467 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, W. B. et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185, 547–562 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Magic pools: parallel assessment of transposon delivery vectors in bacteria. mSystems 3, e00143-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitaker, W. R., Shepherd, E. S. & Sonnenburg, J. L. Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 169, 538–546 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galardini, M. et al. Phenotype inference in an Escherichia coli strain panel. eLife 6, e31035 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liuu, S. et al. Identification of a muropeptide precursor transporter from gut microbiota and its role in preventing intestinal inflammation. Proc. Natl Acad. Sci. USA 120, e2306863120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasseri, S. A. et al. An alternative broad-specificity pathway for glycan breakdown in bacteria. Nature 631, 199–206 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vercauteren, S. et al. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol. Rev. 48, fuae020 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voogdt, C. G. P. et al. Randomly barcoded transposon mutant libraries for gut commensals II: applying libraries for functional genetics. Cell Rep. 43, 113519 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microbiol. 54, 2750–2755 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, J. A. et al. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J. Microbiol. Methods 95, 167–174 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Possemiers, S., Verthe, K., Uyttendaele, S. & Verstraete, W. PCR–DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 49, 495–507 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silverman, J. D., Durand, H. K., Bloom, R. J., Mukherjee, S. & David, L. A. Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. Microbiome 6, 202 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Probert, H. M. & Gibson, G. R. Development of a fermentation system to model sessile bacterial populations in the human colon. Biofilms 1, 13–19 (2004).

    Article 

    Google Scholar
     

  • Jin, X. et al. Culturing of a complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-associated spatial organization. Nat. Commun. 14, 3510 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Establishing a mucosal gut microbial community in vitro using an artificial simulator. PLoS ONE 13, e0197692 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, T. H. et al. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate. FEMS Microbiol. Ecol. 92, fiv165 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Van den Abbeele, P. et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 5, 106–115 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Reese, A. T. et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 7, e35987 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auchtung, J. M., Robinson, C. D. & Britton, R. A. Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome 3, 42 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahnic, A., Auchtung, J. M., Poklar Ulrih, N., Britton, R. A. & Rupnik, M. Microbiota in vitro modulated with polyphenols shows decreased colonization resistance against Clostridioides difficile but can neutralize cytotoxicity. Sci. Rep. 10, 8358 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobson, C. A. et al. MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study microbiota-dependent response to antibiotic treatment. JAC Antimicrob. Resist. 4, dlac077 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naimi, S., Viennois, E., Gewirtz, A. T. & Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Emerging microfluidic technologies for microbiome research. Front. Microbiol. 13, 906979 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr. Biol. 6, 796–805 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ge, Z., Girguis, P. R. & Buie, C. R. Nanoporous microscale microbial incubators. Lab Chip 16, 480–488 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, L. et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc. Natl Acad. Sci. USA 111, 9768–9773 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, J. Y. et al. Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial ‘dark matter’. Integr. Biol. 12, 263–274 (2020).

    Article 

    Google Scholar
     

  • Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westermann, A. J. & Vogel, J. Cross-species RNA-seq for deciphering host–microbe interactions. Nat. Rev. Genet. 22, 361–378 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilmes, P., Heintz-Buschart, A. & Bond, P. L. A decade of metaproteomics: where we stand and what the future holds. Proteomics 15, 3409–3417 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krautkramer, K. A., Fan, J. & Backhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricaurte, D. et al. High-throughput transcriptomics of 409 bacteria–drug pairs reveals drivers of gut microbiota perturbation. Nat. Microbiol. 9, 561–575 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dinglasan, J. L. N., Otani, H., Doering, D. T., Udwary, D. & Mouncey, N. J. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01141-y (2025).

  • Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabrielli, N. et al. Unravelling metabolic cross-feeding in a yeast-bacteria community using 13C-based proteomics. Mol. Syst. Biol. 19, e11501 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofer, K. & Jaschke, A. Epitranscriptomics: RNA modifications in bacteria and archaea. Microbiol. Spectr. 6, 10.1128/microbiolspec.rwr-0015-2017 (2018).

  • Birk, M. S., Charpentier, E. & Frese, C. K. Automated phosphopeptide enrichment for Gram-positive bacteria. J. Proteome Res. 20, 4886–4892 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homberger, C., Barquist, L. & Vogel, J. Ushering in a new era of single-cell transcriptomics in bacteria. Microlife 3, uqac020 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vegvari, A., Zhang, X. & Zubarev, R. A. Toward single bacterium proteomics. J. Am. Soc. Mass. Spectrom. 34, 2098–2106 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duetz, W. A. et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66, 2641–2646 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4, e00186-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enning, D. et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 14, 1772–1787 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zund, J. N. et al. A flexible high-throughput cultivation protocol to assess the response of individuals’ gut microbiota to diet-, drug-, and host-related factors. ISME Commun. 4, ycae035 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartscht, K., Cypionka, H. & Overmann, J. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28, 249–259 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Diaz-Colunga, J., Catalan, P., San Roman, M., Arrabal, A. & Sanchez, A. Full factorial construction of synthetic microbial communities. Preprint at bioRxiv https://doi.org/10.1101/2024.05.03.592148 (2024).

  • Raj, K. et al. Automation assisted anaerobic phenotyping for metabolic engineering. Microb. Cell Fact. 20, 184 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez-Sepulveda, B. M. et al. An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes. Genome Biol. 22, 349 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mortier, T., Wieme, A. D., Vandamme, P. & Waegeman, W. Bacterial species identification using MALDI–TOF mass spectrometry and machine learning techniques: a large-scale benchmarking study. Comput. Struct. Biotechnol. J. 19, 6157–6168 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uvarova, Y. E. et al. Accurate noise-robust classification of Bacillus species from MALDI–TOF MS spectra using a denoising autoencoder. J. Integr. Bioinform. 20, 20230017 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. Y. et al. Rapid classification of group B Streptococcus serotypes based on matrix-assisted laser desorption ionization–time of flight mass spectrometry and machine learning techniques. BMC Bioinformatics 20, 703 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, R. D., Costa, V. S., Mellingwood, C. & Soldatova, L. N. Automating sciences: philosophical and social dimensions. IEEE Technol. Soc. Mag. 37, 40–46 (2018).

    Article 

    Google Scholar
     

  • Jing, J., Garbeva, P., Raaijmakers, J. M. & Medema, M. H. Strategies for tailoring functional microbial synthetic communities. ISME J. 18, wrae049 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, N., Hitch, T. C. A., Haller, D., Lagkouvardos, I. & Clavel, T. MiMiC: a bioinformatic approach for generation of synthetic communities from metagenomes. Microb. Biotechnol. 14, 1757–1770 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raghu, A. K., Palanikumar, I. & Raman, K. Designing function-specific minimal microbiomes from large microbial communities. NPJ Syst. Biol. Appl. 10, 46 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connors, B. M. et al. Control points for design of taxonomic composition in synthetic human gut communities. Cell Syst. 14, 1044–1058 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Predl, M., Miesskes, M., Rattei, T. & Zanghellini, J. PyCoMo: a Python package for community metabolic model creation and analysis. Bioinformatics 40, btae153 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Lelie, D. et al. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat. Commun. 12, 3105 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haby, B. et al. Integrated robotic mini bioreactor platform for automated, parallel microbial cultivation with online data handling and process control. SLAS Technol. 24, 569–582 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halle, L. et al. Robotic workflows for automated long-term adaptive laboratory evolution: improving ethanol utilization by Corynebacterium glutamicum. Microb. Cell Fact. 22, 175 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heux, S., Poinot, J., Massou, S., Sokol, S. & Portais, J. C. A novel platform for automated high-throughput fluxome profiling of metabolic variants. Metab. Eng. 25, 8–19 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Louie, T. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. JAMA 329, 1356–1366 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minkoff, N. Z. et al. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst. Rev. 4, CD013871 (2023).

    PubMed 

    Google Scholar
     

  • Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine 29–30, 100642 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberl, C. et al. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe 29, 1680–1692 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osbelt, L. et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe 29, 1663–1679 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science 382, eadj3502 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurt, F. et al. Co-cultivation is a powerful approach to produce a robust functionally designed synthetic consortium as a live biotherapeutic product (LBP). Gut Microbes 15, 2177486 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DuPont, H. L., DuPont, A. W. & Tillotson, G. S. Microbiota restoration therapies for recurrent Clostridioides difficile infection reach an important new milestone. Ther. Adv. Gastroenterol. 17, 17562848241253089 (2024).

    Article 
    CAS 

    Google Scholar
     

  • El Hage Chehade, N. et al. Efficacy of fecal microbiota transplantation in the treatment of active ulcerative colitis: a systematic review and meta-analysis of double-blind randomized controlled trials. Inflamm. Bowel Dis. 29, 808–817 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radlinski, L. C. & Baumler, A. J. Microbiome science needs more microbiologists. Nat. Microbiol. 10, 263–264 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here