Hungate, R. E., Smith, W. & Clarke, R. T. Suitability of butyl rubber stoppers for closing anaerobic roll culture tubes. J. Bacteriol. 91, 908–909 (1966).
Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu. Rev. Microbiol. 71, 711–730 (2017).
Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).
Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).
Collins, M. D. et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812–826 (1994).
Gibson, G. R., Macfarlane, G. T. & Cummings, J. H. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 65, 103–111 (1988).
Holdeman, L. V., Good, I. J. & Moore, W. E. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31, 359–375 (1976).
Sakamoto, M. et al. Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 54, 877–883 (2004).
Schwiertz, A. et al. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst. Appl. Microbiol. 25, 46–51 (2002).
Walker, A. W. & Hoyles, L. Human microbiome myths and misconceptions. Nat. Microbiol. 8, 1392–1396 (2023).
Lagier, J. C. et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185–1193 (2012).
Rahi, P., Prakash, O. & Shouche, Y. S. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI–TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front. Microbiol. 7, 1359 (2016).
Afrizal, A. et al. Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 30, 1630–1645 (2022).
Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).
Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).
Furuichi, M. et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 633, 878–886 (2024).
Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067 (2021).
Hitch, T. C. A. et al. Broad diversity of human gut bacteria accessible via a traceable strain deposition system. Preprint at bioRxiv https://doi.org/10.1101/2024.06.20.599854 (2024).
Liu, C. et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome 9, 119 (2021).
Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367 (2018).
Sorbara, M. T. et al. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28, 134–146 (2020).
Wylensek, D. et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 11, 6389 (2020).
Zenner, C. et al. Early-life immune system maturation in chickens using a synthetic community of cultured gut bacteria. mSystems 6, e01300-20 (2021).
Zhang, Z. J. et al. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution. Cell Host Microbe 32, 1853–1867 (2024).
Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).
Hitch, T. C. A. et al. Recent advances in culture-based gut microbiome research. Int. J. Med. Microbiol. 311, 151485 (2021).
Martiny, A. C. The ‘1% culturability paradigm’ needs to be carefully defined. ISME J. 14, 10–11 (2020).
Rodriguez Del Rio, A. et al. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 626, 377–384 (2024).
Thomas, A. M. & Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 17, 48 (2019).
Blanco-Miguez, A. et al. Extension of the Segatella copri complex to 13 species with distinct large extrachromosomal elements and associations with host conditions. Cell Host Microbe 31, 1804–1819 (2023).
Yin, Q. et al. Ecological dynamics of Enterobacteriaceae in the human gut microbiome across global populations. Nat. Microbiol. 10, 541–553 (2025).
Afrizal, A. et al. Anaerobic single-cell dispensing facilitates the cultivation of human gut bacteria. Environ. Microbiol. 24, 3861–3881 (2022).
Huang, Y. et al. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. 41, 1424–1433 (2023).
Muller, P. et al. High-throughput anaerobic screening for identifying compounds acting against gut bacteria in monocultures or communities. Nat. Protoc. 19, 668–699 (2024).
Sanders, J. G. et al. A low-cost genomics workflow enables isolate screening and strain-level analyses within microbiomes. Genome Biol. 23, 212 (2022).
Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).
Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).
Terekhov, S. S. et al. Ultrahigh-throughput functional profiling of microbiota communities. Proc. Natl Acad. Sci. USA 115, 9551–9556 (2018).
Watterson, W. J. et al. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. eLife 9, e56998 (2020).
Bellais, S. et al. Species-targeted sorting and cultivation of commensal bacteria from the gut microbiome using flow cytometry under anaerobic conditions. Microbiome 10, 24 (2022).
Pauvert, C. maldipickr: dereplicate and cherry-pick mass spectrometry spectra. https://doi.org/10.32614/cran.package.maldipickr (2023).
Helleckes, L. M. et al. From frozen cell bank to product assay: high-throughput strain characterisation for autonomous design–build–test–learn cycles. Microb. Cell Fact. 22, 130 (2023).
Aranda-Diaz, A. et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota. Cell Host Microbe 30, 260–272 (2022).
Cheng, A. G. et al. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell 185, 3617–3636 (2022).
Goldman, S. L. et al. Culture-enriched community profiling improves resolution of the vertebrate gut microbiota. Mol. Ecol. Resour. 22, 122–136 (2022).
Rettedal, E. A., Gumpert, H. & Sommer, M. O. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun. 5, 4714 (2014).
Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).
van den Berg, N. I. et al. Emergent survival and extinction of species within gut bacterial communities. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591619 (2024).
Wornell, K. et al. High-throughput method for novel medium development for culture of anaerobic gut bacteria. Curr. Protoc. 2, e463 (2022).
Koblitz, J., Reimer, L. C., Pukall, R. & Overmann, J. Predicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets. Preprint at bioRxiv https://doi.org/10.1101/2024.08.12.607695 (2024).
Koblitz, J. et al. MediaDive: the expert-curated cultivation media database. Nucleic Acids Res. 51, D1531–D1538 (2023).
Blount, Z. D., Barrick, J. E., Davidson, C. J. & Lenski, R. E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489, 513–518 (2012).
Riedel, T. et al. Genome resequencing of the virulent and multidrug-resistant reference strain Clostridium difficile 630. Genome Announc. 3, e00276-15 (2015).
Garcia-Bayona, L. & Comstock, L. E. Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio 10, e01762-19 (2019).
Tripathi, S. et al. Randomly barcoded transposon mutant libraries for gut commensals I: strategies for efficient library construction. Cell Rep. 43, 113517 (2024).
Davey, L. E. et al. A genetic system for Akkermansia muciniphila reveals a role for mucin foraging in gut colonization and host sterol biosynthesis gene expression. Nat. Microbiol. 8, 1450–1467 (2023).
Jin, W. B. et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185, 547–562 (2022).
Liu, H. et al. Magic pools: parallel assessment of transposon delivery vectors in bacteria. mSystems 3, e00143-17 (2018).
Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).
Whitaker, W. R., Shepherd, E. S. & Sonnenburg, J. L. Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 169, 538–546 (2017).
Galardini, M. et al. Phenotype inference in an Escherichia coli strain panel. eLife 6, e31035 (2017).
Liuu, S. et al. Identification of a muropeptide precursor transporter from gut microbiota and its role in preventing intestinal inflammation. Proc. Natl Acad. Sci. USA 120, e2306863120 (2023).
Nasseri, S. A. et al. An alternative broad-specificity pathway for glycan breakdown in bacteria. Nature 631, 199–206 (2024).
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).
Vercauteren, S. et al. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol. Rev. 48, fuae020 (2024).
Voogdt, C. G. P. et al. Randomly barcoded transposon mutant libraries for gut commensals II: applying libraries for functional genetics. Cell Rep. 43, 113519 (2024).
Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).
Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).
Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microbiol. 54, 2750–2755 (1988).
McDonald, J. A. et al. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J. Microbiol. Methods 95, 167–174 (2013).
Possemiers, S., Verthe, K., Uyttendaele, S. & Verstraete, W. PCR–DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 49, 495–507 (2004).
Silverman, J. D., Durand, H. K., Bloom, R. J., Mukherjee, S. & David, L. A. Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. Microbiome 6, 202 (2018).
Probert, H. M. & Gibson, G. R. Development of a fermentation system to model sessile bacterial populations in the human colon. Biofilms 1, 13–19 (2004).
Jin, X. et al. Culturing of a complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-associated spatial organization. Nat. Commun. 14, 3510 (2023).
Liu, L. et al. Establishing a mucosal gut microbial community in vitro using an artificial simulator. PLoS ONE 13, e0197692 (2018).
Tran, T. H. et al. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate. FEMS Microbiol. Ecol. 92, fiv165 (2016).
Van den Abbeele, P. et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 5, 106–115 (2012).
Reese, A. T. et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 7, e35987 (2018).
Auchtung, J. M., Robinson, C. D. & Britton, R. A. Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome 3, 42 (2015).
Mahnic, A., Auchtung, J. M., Poklar Ulrih, N., Britton, R. A. & Rupnik, M. Microbiota in vitro modulated with polyphenols shows decreased colonization resistance against Clostridioides difficile but can neutralize cytotoxicity. Sci. Rep. 10, 8358 (2020).
Hobson, C. A. et al. MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study microbiota-dependent response to antibiotic treatment. JAC Antimicrob. Resist. 4, dlac077 (2022).
Naimi, S., Viennois, E., Gewirtz, A. T. & Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66 (2021).
Yu, Y. et al. Emerging microfluidic technologies for microbiome research. Front. Microbiol. 13, 906979 (2022).
Ma, L. et al. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr. Biol. 6, 796–805 (2014).
Ge, Z., Girguis, P. R. & Buie, C. R. Nanoporous microscale microbial incubators. Lab Chip 16, 480–488 (2016).
Ma, L. et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc. Natl Acad. Sci. USA 111, 9768–9773 (2014).
Tan, J. Y. et al. Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial ‘dark matter’. Integr. Biol. 12, 263–274 (2020).
Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).
Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).
Westermann, A. J. & Vogel, J. Cross-species RNA-seq for deciphering host–microbe interactions. Nat. Rev. Genet. 22, 361–378 (2021).
Wilmes, P., Heintz-Buschart, A. & Bond, P. L. A decade of metaproteomics: where we stand and what the future holds. Proteomics 15, 3409–3417 (2015).
Krautkramer, K. A., Fan, J. & Backhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021).
Ricaurte, D. et al. High-throughput transcriptomics of 409 bacteria–drug pairs reveals drivers of gut microbiota perturbation. Nat. Microbiol. 9, 561–575 (2024).
Dinglasan, J. L. N., Otani, H., Doering, D. T., Udwary, D. & Mouncey, N. J. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01141-y (2025).
Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).
Gabrielli, N. et al. Unravelling metabolic cross-feeding in a yeast-bacteria community using 13C-based proteomics. Mol. Syst. Biol. 19, e11501 (2023).
Hofer, K. & Jaschke, A. Epitranscriptomics: RNA modifications in bacteria and archaea. Microbiol. Spectr. 6, 10.1128/microbiolspec.rwr-0015-2017 (2018).
Birk, M. S., Charpentier, E. & Frese, C. K. Automated phosphopeptide enrichment for Gram-positive bacteria. J. Proteome Res. 20, 4886–4892 (2021).
Homberger, C., Barquist, L. & Vogel, J. Ushering in a new era of single-cell transcriptomics in bacteria. Microlife 3, uqac020 (2022).
Vegvari, A., Zhang, X. & Zubarev, R. A. Toward single bacterium proteomics. J. Am. Soc. Mass. Spectrom. 34, 2098–2106 (2023).
Duetz, W. A. et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66, 2641–2646 (2000).
Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4, e00186-19 (2019).
Enning, D. et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 14, 1772–1787 (2012).
Zund, J. N. et al. A flexible high-throughput cultivation protocol to assess the response of individuals’ gut microbiota to diet-, drug-, and host-related factors. ISME Commun. 4, ycae035 (2024).
Bartscht, K., Cypionka, H. & Overmann, J. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28, 249–259 (1999).
Diaz-Colunga, J., Catalan, P., San Roman, M., Arrabal, A. & Sanchez, A. Full factorial construction of synthetic microbial communities. Preprint at bioRxiv https://doi.org/10.1101/2024.05.03.592148 (2024).
Raj, K. et al. Automation assisted anaerobic phenotyping for metabolic engineering. Microb. Cell Fact. 20, 184 (2021).
Perez-Sepulveda, B. M. et al. An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes. Genome Biol. 22, 349 (2021).
Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).
Mortier, T., Wieme, A. D., Vandamme, P. & Waegeman, W. Bacterial species identification using MALDI–TOF mass spectrometry and machine learning techniques: a large-scale benchmarking study. Comput. Struct. Biotechnol. J. 19, 6157–6168 (2021).
Uvarova, Y. E. et al. Accurate noise-robust classification of Bacillus species from MALDI–TOF MS spectra using a denoising autoencoder. J. Integr. Bioinform. 20, 20230017 (2023).
Wang, H. Y. et al. Rapid classification of group B Streptococcus serotypes based on matrix-assisted laser desorption ionization–time of flight mass spectrometry and machine learning techniques. BMC Bioinformatics 20, 703 (2019).
King, R. D., Costa, V. S., Mellingwood, C. & Soldatova, L. N. Automating sciences: philosophical and social dimensions. IEEE Technol. Soc. Mag. 37, 40–46 (2018).
Jing, J., Garbeva, P., Raaijmakers, J. M. & Medema, M. H. Strategies for tailoring functional microbial synthetic communities. ISME J. 18, wrae049 (2024).
Kumar, N., Hitch, T. C. A., Haller, D., Lagkouvardos, I. & Clavel, T. MiMiC: a bioinformatic approach for generation of synthetic communities from metagenomes. Microb. Biotechnol. 14, 1757–1770 (2021).
Raghu, A. K., Palanikumar, I. & Raman, K. Designing function-specific minimal microbiomes from large microbial communities. NPJ Syst. Biol. Appl. 10, 46 (2024).
Connors, B. M. et al. Control points for design of taxonomic composition in synthetic human gut communities. Cell Syst. 14, 1044–1058 (2023).
Predl, M., Miesskes, M., Rattei, T. & Zanghellini, J. PyCoMo: a Python package for community metabolic model creation and analysis. Bioinformatics 40, btae153 (2024).
van der Lelie, D. et al. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat. Commun. 12, 3105 (2021).
Haby, B. et al. Integrated robotic mini bioreactor platform for automated, parallel microbial cultivation with online data handling and process control. SLAS Technol. 24, 569–582 (2019).
Halle, L. et al. Robotic workflows for automated long-term adaptive laboratory evolution: improving ethanol utilization by Corynebacterium glutamicum. Microb. Cell Fact. 22, 175 (2023).
Heux, S., Poinot, J., Massou, S., Sokol, S. & Portais, J. C. A novel platform for automated high-throughput fluxome profiling of metabolic variants. Metab. Eng. 25, 8–19 (2014).
Louie, T. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. JAMA 329, 1356–1366 (2023).
Minkoff, N. Z. et al. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst. Rev. 4, CD013871 (2023).
Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine 29–30, 100642 (2020).
Eberl, C. et al. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe 29, 1680–1692 (2021).
Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).
Osbelt, L. et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe 29, 1663–1679 (2021).
Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science 382, eadj3502 (2023).
Kurt, F. et al. Co-cultivation is a powerful approach to produce a robust functionally designed synthetic consortium as a live biotherapeutic product (LBP). Gut Microbes 15, 2177486 (2023).
DuPont, H. L., DuPont, A. W. & Tillotson, G. S. Microbiota restoration therapies for recurrent Clostridioides difficile infection reach an important new milestone. Ther. Adv. Gastroenterol. 17, 17562848241253089 (2024).
El Hage Chehade, N. et al. Efficacy of fecal microbiota transplantation in the treatment of active ulcerative colitis: a systematic review and meta-analysis of double-blind randomized controlled trials. Inflamm. Bowel Dis. 29, 808–817 (2023).
Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).
Radlinski, L. C. & Baumler, A. J. Microbiome science needs more microbiologists. Nat. Microbiol. 10, 263–264 (2025).