Home NATURALEZA Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration

Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration

8
0


  • Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salsman, J. & Dellaire, G. Precision genome editing in the CRISPR era. Biochem. Cell Biol. 95, 187–201 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quadros, R. M. et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 18, 92 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. B. et al. Design and specificity of long ssDNA donors for CRISPR-based knock-in. Preprint at bioRxiv https://doi.org/10.1101/178905 (2019).

  • Bai, H. et al. CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. BMC Genomics 21, 67 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miura, H., Quadros, R. M., Gurumurthy, C. B. & Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 13, 195–215 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shy, B. R. et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531 (2022).

  • Iyer, S. et al. Efficient homology-directed repair with circular single-stranded DNA donors. CRISPR J. 5, 685–701 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Won, M. & Dawid, I. B. PCR artifact in testing for homologous recombination in genomic editing in zebrafish. PLoS ONE 12, e0172802 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wurtele, H., Little, K. C. & Chartrand, P. Illegitimate DNA integration in mammalian cells. Gene Ther. 10, 1791–1799 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zorin, B., Hegemann, P. & Sizova, I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot. Cell 4, 1264–1272 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fire, A. & Xu, S. Q. Rolling replication of short DNA circles. Proc. Natl Acad. Sci. USA 92, 4641–4645 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huh, J. H. & Shan, Q. Targeted genome modification using circular single-stranded DNA. US patent application. https://patentimages.storage.googleapis.com/0a/96/dd/4875c018c5faad/US20210340571A1.pdf (2021).

  • Cha, T. et al. Genetic control of aerogel and nanofoam properties, applied to Ni–MnOx cathode design. Adv. Funct. Mater. 31, 2010867 (2021).

  • Tatiossian, K. J. et al. Rational selection of CRISPR–Cas9 guide RNAs for homology-directed genome editing. Mol. Ther. 29, 1057–1069 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kath, J. et al. Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol. Ther. Methods Clin. Dev. 25, 311–330 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briard, B., Place, D. E. & Kanneganti, T. D. DNA sensing in the innate immune response. Physiology (Bethesda) 35, 112–124 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahid, A., Ismail, H., Li, B. & Jin, T. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front. Immunol. 11, 613039 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gopalappa, R., Suresh, B., Ramakrishna, S. & Kim, H. H. Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. Nucleic Acids Res. 46, e71 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132–141 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M. S. et al. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci. Rep. 11, 19482 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bin Moon, S. et al. Highly efficient genome editing by CRISPR–Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat. Commun. 9, 3651 (2018).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Engineering cell signaling using tunable CRISPR–Cpf1-based transcription factors. Nat. Commun. 8, 2095 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odak, A. et al. Novel extragenic genomic safe harbors for precise therapeutic T cell engineering. Blood 141, 2698–2712 (2023).

  • Hung, K. L. et al. Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol. Ther. 26, 456–467 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R. & Moriarity, B. S. Engineering of primary human B cells with CRISPR/Cas9 targeted nuclease. Sci. Rep. 8, 12144 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aiuti, A. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott–Aldrich syndrome. Science 341, 1233151 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sessa, M. et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 388, 476–487 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, H. et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol. Ther. Oncolytics 11, 127–137 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z., Chinnasamy, N. & Morgan, R. A. Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. J. Transl. Med. 10, 29 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Codner, G. F. et al. Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol. 16, 70 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanza, D. G. et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol. 16, 69 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, Q. et al. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV. Mol. Genet. Genomics 293, 1051–1060 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, J. et al. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair. DNA Repair (Amst.) 70, 67–71 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dokshin, G. A., Ghanta, K. S., Piscopo, K. M. & Mello, C. C. Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics. 210, 781–787 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veneziano, R. et al. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 8, 6548 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shepherd, T. R., Du, R. R., Huang, H., Wamhoff, E. C. & Bathe, M. Bioproduction of pure, kilobase-scale single-stranded DNA. Sci. Rep. 9, 6121 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nafisi, P. M., Aksel, T. & Douglas, S. M. Construction of a novel phagemid to produce custom DNA origami scaffolds. Synth. Biol. (Oxf.) 3, ysy015 (2018).

  • Liang, X., Kuhn, H. & Frank-Kamenetskii, M. D. Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes. Biophys. J. 90, 2877–2889 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Highly efficient generation of biallelic reporter gene knock-in mice via CRISPR-mediated genome editing of ESCs. Protein Cell 7, 152–156 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • He, X. et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, L. et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc. Natl Acad. Sci. USA 111, 9591–9596 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, K. et al. Whole transcriptome analysis of human primary activated pan CD4/CD8 T cells treated with mRNA, double-stranded DNA or circular single stranded DNA. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE278608 (2024).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here