Home NATURALEZA Circular RNA aptamers targeting neuroinflammation ameliorate Alzheimer disease phenotypes in mouse models

Circular RNA aptamers targeting neuroinflammation ameliorate Alzheimer disease phenotypes in mouse models

6
0


  • Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr71 (2011).

    Article 

    Google Scholar
     

  • Gong, C. X., Liu, F. & Iqbal, K. Multifactorial hypothesis and multi-targets for Alzheimer’s disease. J. Alzheimers Dis. 64, S107–s117 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • De Roeck, A., Van Broeckhoven, C. & Sleegers, K. The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol. 138, 201–220 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal, K. & Grundke-Iqbal, I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement. 6, 420–424 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sala Frigerio, C. et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Onyango, I. G. et al. Neuroinflammation in Alzheimer’s disease. Biomedicines 9, 524 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cai, Z. et al. Role of blood–brain barrier in Alzheimer’s disease. J. Alzheimers Dis. 63, 1223–1234 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezai, A. R. et al. Noninvasive hippocampal blood–brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl Acad. Sci. USA 117, 9180–9182 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2024. Alzheimers Dement. (N. Y.) 10, e12465 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, R. & Tang, D. PKR-dependent inflammatory signals. Sci. Signal. 5, pe47 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, K. D., Bak, M. S., Kim, S. J., Rhee, S. & Lee, Y. S. Restoring synaptic plasticity and memory in mouse models of Alzheimer’s disease by PKR inhibition. Mol. Brain 10, 57 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Grancha, M. et al. A novel selective PKR inhibitor restores cognitive deficits and neurodegeneration in Alzheimer disease experimental models. J. Pharmacol. Exp. Ther. 378, 262–275 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tible, M. et al. PKR knockout in the 5xFAD model of Alzheimer’s disease reveals beneficial effects on spatial memory and brain lesions. Aging Cell 18, e12887 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, P. J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 147, 1384–1396 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. M., Wang, L. & D’Mello, S. R. A chemical compound commonly used to inhibit PKR, {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g] benzothiazol-7-one}, protects neurons by inhibiting cyclin-dependent kinase. Eur. J. Neurosci. 28, 2003–2016 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. X. et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell 82, 420–434 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, S.-K. et al. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis. Nat. Biotechnol. 43, 236–246 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugon, J., Mouton-Liger, F., Dumurgier, J. & Paquet, C. PKR involvement in Alzheimer’s disease. Alzheimers Res. Ther. 9, 83 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peel, A. Activation of the cell stress kinase PKR in Alzheimer’s disease and human amyloid precursor protein transgenic mice. Neurobiol. Dis. 14, 52–62 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, R., Yee, K. L. & Sumbria, R. K. Tumor necrosis factor α inhibition for Alzheimer’s disease. J. Cent. Nerv. Syst. Dis. 9, 1179573517709278 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belarbi, K. et al. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J. Neuroinflammation 9, 23 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jammi, N. V., Whitby, L. R. & Beal, P. A. Small molecule inhibitors of the RNA-dependent protein kinase. Biochem. Biophys. Res. Commun. 308, 50–57 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 28, 8354–8360 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spangenberg, E. E. et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139, 1265–1281 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myers, A. & McGonigle, P. Overview of transgenic mouse models for Alzheimer’s disease. Curr. Protoc. Neurosci. 89, e81 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Reimer, L. et al. PKR kinase directly regulates Tau expression and Alzheimer’s disease-related Tau phosphorylation. Brain Pathol. 31, 103–119 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballard, C. et al. Alzheimer’s disease. Lancet 377, 1019–1031 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Reitz, C. & Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 88, 640–651 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, R. & Ohno, M. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5xFAD Alzheimer mouse model. Neurobiol. Dis. 33, 229–235 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vassalli, G., Bueler, H., Dudler, J., von Segesser, L. K. & Kappenberger, L. Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int. J. Cardiol. 90, 229–238 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Zabaleta, N. & Gil-Farina, I. Tracing the fate of AAV vectors in the body. Nat. Biotechnol. 42, 1183–1184 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollidge, B. S. et al. Kinetics and durability of transgene expression after intrastriatal injection of AAV9 vectors. Front. Neurol. 13, 1051559 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, M. et al. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer’s disease. Alzheimers Dement. 14, 215–229 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, R. et al. Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat. Methods 19, 976–985 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • d’Errico, P. et al. Microglia contribute to the propagation of Aβ into unaffected brain tissue. Nat. Neurosci. 25, 20–25 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, C.-H. et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacolog. 15, 77–90 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Paquet, C. et al. The PKR activator PACT is induced by Aβ: involvement in Alzheimer’s disease. Brain Pathol. 22, 219–229 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morel, M., Couturier, J., Lafay-Chebassier, C., Paccalin, M. & Page, G. PKR, the double stranded RNA-dependent protein kinase as a critical target in Alzheimer’s disease. J. Cell. Mol. Med. 13, 1476–1488 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zunt, J. R. Central nervous system infection during immunosuppression. Neurol. Clin. 20, 1–22 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradshaw, M. J., Cho, T. A. & Chow, F. C. Central nervous system infections associated with immunosuppressive therapy for rheumatic disease. Rheum. Dis. Clin. North Am. 43, 607–619 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1, 848–858 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here