Categories
NATURALEZA

Medicina de edição de genes de precisão faz história, e está apenas começando


Nature Biotechnology, publicado online: 30 de junho de 2025; Dois: 10.1038/S41587-025-02741-6

Apesar de seu surpreendente sucesso, editores base personalizados e editores principais precisarão de tempo para ampliar seu impacto clínico.



Source link

Categories
NATURALEZA

Improving engineered biological systems with electronics and microfluidics


  • Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Way, J. C., Collins, J. J., Keasling, J. D. & Silver, P. A. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157, 151–161 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. & Densmore, D. Genetic circuit design automation with Cello 2.0. Nat. Protoc. 17, 1097–1113 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 12, 878 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shetty, R. P., Endy, D. & Knight, T. F. Jr. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purnick, P. E. M. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwok, R. Five hard truths for synthetic biology. Nature 463, 288–290 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Keasling, J. D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367–379 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, L., Garfinkel, M. & Schmidt, M. Bottlenecks and opportunities for synthetic biology biosafety standards. Nat. Commun. 13, 2175 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abate, A. R., Hung, T., Mary, P., Agresti, J. J. & Weitz, D. A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl Acad. Sci. USA 107, 19163–19166 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selberg, J., Gomez, M. & Rolandi, M. The potential for convergence between synthetic biology and bioelectronics. Cell Syst. 7, 231–244 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivnay, J. et al. Integrating bioelectronics with cell-based synthetic biology. Nat. Rev. Bioeng. 3, 317–332 (2025).

  • Aghlmand, F. et al. A 65-nm CMOS fluorescence sensor for dynamic monitoring of living cells. IEEE J. Solid-State Circuits 58, 3003–3019 (2023).

    Article 

    Google Scholar
     

  • Lee, H., Liu, Y., Westervelt, R. M. & Ham, D. IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid-State Circuits 41, 1471–1480 (2006).

    Article 

    Google Scholar
     

  • Ghafar-Zadeh, E., Sawan, M., Chodavarapu, V. P. & Hosseini-Nia, T. Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans. Biomed. Circuits Syst. 4, 232–238 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Manickam, A. et al. A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J. Solid-State Circuits 52, 2857–2870 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C., Maldonado, J. & Sengupta, K. CMOS-based electrokinetic microfluidics with multi-modal cellular and bio-molecular sensing for end-to-end point-of-care system. IEEE Trans. Biomed. Circuits Syst. 15, 1250–1267 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).

  • Eddie, B. J., Malanoski, A. P., Onderko, E. L., Phillips, D. A. & Glaven, S. M. Marinobacter atlanticus electrode biofilms differentially regulate gene expression depending on electrode potential and lifestyle. Biofilm 3, 100051 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rothschild, L. J. et al. Building synthetic cells—from the technology infrastructure to cellular entities. ACS Synth. Biol. 13, 974–997 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, J. K. et al. Cell-free biosensors for rapid detection of water contaminants. Nat. Biotechnol. 38, 1451–1459 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, M. K. et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9, 3347 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Genetic circuit design automation for yeast. Nat. Microbiol. 5, 1349–1360 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorec, A. J. H. et al. Emergent digital bio-computation through spatial diffusion and engineered bacteria. Nat. Commun. 15, 4896 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, G. L., Reynolds, E. E. & Belcher, A. M. Designing yeast as plant-like hyperaccumulators for heavy metals. Nat. Commun. 10, 5080 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Meer, J. R. & Belkin, S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol. 8, 511–522 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Go´mez, R. et al. Microfluidic biochip for impedance spectroscopy of biological species. Biomed. Microdevices 3, 201–209 (2001).


    Google Scholar
     

  • Petchakup, C., Li, K. & Hou, H. Advances in single cell impedance cytometry for biomedical applications. Micromachines 8, 87 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kang, J., Kim, T., Tak, Y., Lee, J.-H. & Yoon, J. Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J. Ind. Eng. Chem. 18, 800–807 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zadeh, E. G., Sawan, M., Jalali, M. & Therriault, D. CMOS-based capacitive sensor array dedicated to microfluidic studies. In 2006 International Workshop on Computer Architecture for Machine Perception and Sensing 42–43 (IEEE, 2006).

  • Valijam, S. et al. Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint. Sci. Rep. 13, 9560 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akabuogu, E. U., Zhang, L., Krašovec, R., Roberts, I. S. & Waigh, T. A. Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior. Nano Lett. 24, 2234–2241 (2024).

    CAS 

    Google Scholar
     

  • Arduini, F. et al. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 126, 346–354 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, C., Li, C.-W., Ji, S. & Yang, M. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560, 1–23 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gach, P. C. et al. A droplet microfluidic platform for automating genetic engineering. ACS Synth. Biol. 5, 426–433 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwai, K. et al. Scalable and automated CRISPR-based strain engineering using droplet microfluidics. Microsyst. Nanoeng. 8, 31 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. & Quake, S. R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17, 1109–1111 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatch, A. C. et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11, 3838–3845 (2011).


    Google Scholar
     

  • Bhargava, K. C., Thompson, B. & Malmstadt, N. Discrete elements for 3D microfluidics. Proc. Natl Acad. Sci. USA 111, 15013–15018 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y., Novak, R., Shuga, J., Smith, M. T. & Mathies, R. A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 82, 3183–3190 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, M. R. & Hasty, J. Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10, 628–638 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toriello, N. M. et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc. Natl Acad. Sci. USA 105, 20173–20178 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung, K. et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl Acad. Sci. USA 109, 7665–7670 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churski, K. et al. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12, 1629–1637 (2012).


    Google Scholar
     

  • Oblath, E. A., Henley, W. H., Alarie, J. P. & Ramsey, J. M. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip 13, 1325–1332 (2013).


    Google Scholar
     

  • Lashkaripour, A. et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 12, 25 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linshiz, G. et al. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. J. Biol. Eng. 10, 3 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fracassi, C., Postiglione, L., Fiore, G. & di Bernardo, D. Automatic control of gene expression in mammalian cells. ACS Synth. Biol. 5, 296–302 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, L. L., Babikian, S., Li, G.-P. & Bachman, M. Microfluidic printed circuit boards. In 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) 1576–1581 (IEEE, 2011).

  • Husser, M. C., Vo, P. Q. N., Sinha, H., Ahmadi, F. & Shih, S. C. C. An automated induction microfluidics system for synthetic biology. ACS Synth. Biol. 7, 933–944 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howell, J., Hammarton, T. C., Altmann, Y. & Jimenez, M. High-speed particle detection and tracking in microfluidic devices using event-based sensing. Lab Chip 20, 3024–3035 (2020).

    CAS 

    Google Scholar
     

  • de Cesare, I. et al. ChipSeg: an automatic tool to segment bacterial and mammalian cells cultured in microfluidic devices. ACS Omega 6, 2473–2476 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachler, S., Haidas, D., Ort, M., Duncombe, T. A. & Dittrich, P. S. Microfluidic platform enables tailored translocation and reaction cascades in nanoliter droplet networks. Commun. Biol. 3, 769 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Sluijs, B., Maas, R. J. M., van der Linden, A. J., de Greef, T. F. A. & Huck, W. T. S. A microfluidic optimal experimental design platform for forward design of cell-free genetic networks. Nat. Commun. 13, 3626 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. et al. A new design for living cell-based biosensors: microgels with a selectively permeable shell that can harbor bacterial species. Sens. Actuators B Chem. 334, 129648 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Khazim, M., Pedone, E., Postiglione, L., di Bernardo, D. & Marucci, L. A microfluidic/microscopy-based platform for on-chip controlled gene expression in mammalian cells. Methods Mol. Biol. 2229, 205–219 (2021).

  • Ren, Y. et al. A three-in-one microfluidic droplet digital PCR platform for absolute quantitative analysis of DNA. Lab Chip 23, 2521–2530 (2023).

    CAS 

    Google Scholar
     

  • Sun, Y. et al. Two-layered microfluidic devices for high-throughput dynamic analysis of synthetic gene circuits in E. coli. ACS Synth. Biol. 11, 3954–3965 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman, K. M. T. & Butzin, N. C. Counter-on-chip for bacterial cell quantification, growth, and live–dead estimations. Sci. Rep. 14, 782 (2024).

  • Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940–954 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou, M., Dominguez, D. C., Li, X., Sanchez, J. & Scott, G. A versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis. Anal. Chem. 86, 7978–7986 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delamarche, E., Juncker, D. & Schmid, H. Microfluidics for processing surfaces and miniaturizing biological assays. Adv. Mater. 17, 2911–2933 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gulati, S. et al. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6, S493–S506 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xian, Z. et al. A novel microfluidics PMMA/paper hybrid bioimmunosensor for laser-induced fluorescence detection in the determination of α-fetoprotein from serum. Microchem. J. 195, 109476 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Srinivasan, V., Pamula, V., Pollack, M. & Fair, R. A digital microfluidic biosensor for multianalyte detection. In the Sixteenth Annual International Conference on Micro Electro Mechanical Systems 327–330 (IEEE, 2003).

  • Hamedi, M. M. et al. Integrating electronics and microfluidics on paper. Adv. Mater. 28, 5054–5063 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H., Sun, E., Ham, D. & Weissleder, R. Chip–NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, A. Y., Baruch, M., Ajo-Franklin, C. M. & Maharbiz, M. M. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS ONE 12, e0184994 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madhvapathy, S. R. et al. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 8, 1040–1052 (2024).

  • Stephenson, A. et al. PurpleDrop: a digital microfluidics-based platform for hybrid molecular–electronics applications. IEEE Micro 40, 76–86 (2020).

    Article 

    Google Scholar
     

  • Cai, R. et al. Creation of a point-of-care therapeutics sensor using protein engineering, electrochemical sensing and electronic integration. Nat. Commun. 15, 1689 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coelho, B. et al. Hybrid digital-droplet microfluidic chip for applications in droplet digital nucleic acid amplification: design, fabrication and characterization. Sensors 23, 4927 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouzid, K., Greener, J., Carrara, S. & Gosselin, B. Portable impedance-sensing device for microorganism characterization in the field. Sci. Rep. 13, 10526 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jafari, H., Soleymani, L. & Genov, R. 16-Channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs. IEEE Trans. Biomed. Circuits Syst. 6, 468–478 (2012).

    Article 

    Google Scholar
     

  • Manaresi, N. et al. A CMOS chip for individual cell manipulation and detection. IEEE J. Solid-State Circuits 38, 2297–2305 (2003).

    Article 

    Google Scholar
     

  • Luan, L., Evans, R. D., Jokerst, N. M. & Fair, R. B. Integrated optical sensor in a digital microfluidic platform. IEEE Sens. J. 8, 628–635 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hunt, T. P., Issadore, D. & Westervelt, R. M. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip 8, 81–87 (2008).

    CAS 

    Google Scholar
     

  • Lai, K. Y.-T., Yang, Y.-T. & Lee, C.-Y. An intelligent digital microfluidic processor for biomedical detection. J. Signal Process. Syst. 78, 85–93 (2014).

    Article 

    Google Scholar
     

  • Park, J. et al. Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-time multiparameter biomedical assays on curved needle surfaces. ACS Sens. 5, 1363–1373 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khorasani, M., Behnam, M., van den Berg, L., Backhouse, C. J. & Elliott, D. G. High-voltage CMOS controller for microfluidics. IEEE Trans. Biomed. Circuits Syst. 3, 89–96 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Issadore, D., Franke, T., Brown, K. A. & Westervelt, R. M. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips. Lab Chip 10, 2937–2943 (2010).


    Google Scholar
     

  • Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D. & Hassibi, A. A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4, 379–390 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Bounik, R. et al. A CMOS microelectrode array integrated into an open, continuously perfused microfluidic system. In 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS) 491–494 (IEEE, 2022).

  • Ding, Z., Xu, C., Wang, Y. & Pellegrini, G. Ultra-low-light CMOS biosensor complements microfluidics to achieve portable diagnostics. Procedia Technol. 27, 39–41 (2017).

    Article 

    Google Scholar
     

  • Frey, U. et al. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45, 467–482 (2010).

    Article 

    Google Scholar
     

  • Liu, Q. et al. 17.7 Droplet microfluidics co-designed with real-time CMOS luminescence sensing and impedance spectroscopy of 4nl droplets at a 67mm/s velocity. In 2024 IEEE International Solid-State Circuits Conference (ISSCC) 326–328 (IEEE, 2024).

  • Jin, X., Liu, Z., Li, T., Guo, Q. & Yang, J. Online monitoring and portable analytical system with CMOS sensor and microfluidic technology for cell cultivation applications. In 2010 Symposium on Photonics and Optoelectronics 1–4 (IEEE, 2010).

  • Issadore, D., Franke, T., Brown, K. A., Hunt, T. P. & Westervelt, R. M. High-voltage dielectrophoretic and magnetophoretic hybrid integrated circuit/microfluidic chip. J. Microelectromech. Syst. 18, 1220–1225 (2009).


    Google Scholar
     

  • Li, R. et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 11, 3207 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uguz, I. et al. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat. Commun. 15, 533 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawan, M., Miled, M. A. & Ghafar-Zadeh, E. CMOS/microfluidic lab-on-chip for cells-based diagnostic tools. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 5334–5337 (IEEE, 2010).

  • Cornelis, S. et al. Silicon µPCR chip for forensic STR profiling with hybeacon probe melting curves. Sci. Rep. 9, 7341 (2019).

  • Mimee, M. et al. An ingestible bacterial–electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H., Liu, Y., Ham, D. & Westervelt, R. M. Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 7, 331–337 (2007).

    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Miniature magnetic resonance imaging system for in situ monitoring of bacterial growth and biofilm formation. In IEEE Transactions on Biomedical Circuits and Systems 990–1000 (IEEE, 2024).

  • Hall, D. A. et al. A scalable CMOS molecular electronics chip for single-molecule biosensing. IEEE Trans. Biomed. Circuits Syst. 16, 1030–1043 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. & Mason, A. J. Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13, 3929–3934 (2013).


    Google Scholar
     

  • Ghafar-Zadeh, E., Sawan, M. & Therriault, D. Novel direct-write CMOS-based laboratory-on-chip: design, assembly and experimental results. Sens. Actuators A Phys. 134, 27–36 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Lee, H., Xu, L., Koh, D., Nyayapathi, N. & Oh, K. Various on-chip sensors with microfluidics for biological applications. Sensors 14, 17008–17036 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toumazou, C. et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10, 641–646 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chien, J.-C. et al. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies. Lab Chip 18, 2065–2076 (2018).

    CAS 

    Google Scholar
     

  • Levine, P. M., Gong, P., Levicky, R. & Shepard, K. L. Active CMOS sensor array for electrochemical biomolecular detection. IEEE J. Solid-State Circuits 43, 1859–1871 (2008).

    Article 

    Google Scholar
     

  • Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, L., Li, H., Yang, H. & Sengupta, K. Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS. IEEE J. Solid-State Circuits 52, 2388–2406 (2017).

    Article 

    Google Scholar
     

  • Zhu, C., Wen, Y., Liu, T., Yang, H. & Sengupta, K. An ingestible pill with CMOS fluorescence sensor array, bi-directional wireless interface and packaged optics for in-vivo bio-molecular sensing. IEEE Trans. Biomed. Circuits Syst. 17, 257–272 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bustillo, J., Fife, K., Merriman, B. & Rothberg, J. Development of the ion torrent CMOS chip for DNA sequencing. In 2013 IEEE International Electron Devices Meeting 8.1.1–8.1.4 (IEEE, 2013).

  • Lai, K. Y.-T. et al. A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35μm standard CMOS process. In 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC) 1–4 (IEEE, 2015).

  • Murali, P. et al. 24.6 A CMOS micro-flow cytometer for magnetic label detection and classification. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 422–423 (IEEE, 2014).

  • Singh, R. R., Leng, L., Guenther, A. & Genov, R. A CMOS–microfluidic chemiluminescence contact imaging microsystem. IEEE J. Solid-State Circuits 47, 2822–2833 (2012).

    Article 

    Google Scholar
     

  • Kumashi, S. et al. A CMOS multi-modal electrochemical and impedance cellular sensing array for massively paralleled exoelectrogen screening. IEEE Trans. Biomed. Circuits Syst. 15, 221–234 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, D. et al. A multi-functional CMOS biosensor array with on-chip DEP-assisted sensing for rapid low-concentration analyte detection and close-loop particle manipulation with no external electrodes. IEEE Trans. Biomed. Circuits Syst. 17, 1214–1226 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kuo, Y.-H., Chen, Y.-S., Huang, P.-C. & Lee, G.-B. A CMOS-based capacitive biosensor for detection of a breast cancer microRNA biomarker. IEEE Open J. Nanotechnol. 1, 157–162 (2020).

    Article 

    Google Scholar
     

  • Murari, K., Etienne-Cummings, R., Thakor, N. V. & Cauwenberghs, G. A CMOS in-pixel CTIA high-sensitivity fluorescence imager. IEEE Trans. Biomed. Circuits Syst. 5, 449–458 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forouhi, S., Dehghani, R. & Ghafar-Zadeh, E. CMOS based capacitive sensors for life science applications: a review. Sens. Actuators A Phys. 297, 111531 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vallero, A. et al. Memristive biosensors integration with microfluidic platform. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 2120–2127 (2016).

    Article 

    Google Scholar
     

  • Sun, A. C., Alvarez-Fontecilla, E., Venkatesh, A. G., Aronoff-Spencer, E. & Hall, D. A. High-density redox amplified coulostatic discharge-based biosensor array. IEEE J. Solid-State Circuits 53, 2054–2064 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H. et al. 2D magnetic sensor array for real-time cell tracking and multi-site detection with increased robustness and flow-rate. In 2019 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2019).

  • Spyropoulos, G. D., Gelinas, J. N. & Khodagholy, D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2019).

  • Linder, V. et al. Microfluidics/CMOS orthogonal capabilities for cell biology. Biomed. Microdevices 8, 159–166 (2006).


    Google Scholar
     

  • Atkinson, J. T. et al. Real-time bioelectronic sensing of environmental contaminants. Nature 611, 548–553 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, D. A., Gaster, R. S., Makinwa, K. A. A., Wang, S. X. & Murmann, B. A 256 pixel magnetoresistive biosensor microarray in 0.18 µm CMOS. IEEE J. Solid-State Circuits 48, 1290–1301 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuller, C. W. et al. Molecular electronics sensors on a scalable semiconductor chip: a platform for single-molecule measurement of binding kinetics and enzyme activity. Proc. Natl Acad. Sci. USA 119, e2112812119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manickam, A. et al. A fully-electronic charge-based DNA sequencing CMOS biochip. In 2012 Symposium on VLSI Circuits (VLSIC) 126–127 (IEEE, 2012).

  • Manickam, A. et al. A CMOS electrochemical biochip with 32 × 32 three-electrode voltammetry pixels. IEEE J. Solid-State Circuits 54, 2980–2990 (2019).

    Article 

    Google Scholar
     

  • Dragas, J. et al. In vitro multi-functional microelectrode array featuring 59760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels. IEEE J. Solid-State Circuits 52, 1576–1590 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothe, J., Frey, O., Stettler, A., Chen, Y. & Hierlemann, A. Fully integrated CMOS microsystem for electrochemical measurements on 32 × 32 working electrodes at 90 frames per second. Anal. Chem. 86, 6425–6432 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Mahdavi, A., Tirrell, D. A. & Hajimiri, A. A magnetic cell-based sensor. Lab Chip 12, 4465–4471 (2012).


    Google Scholar
     

  • Lee, D. et al. 17.6 Fully integrated CMOS ferrofluidic biomolecular processing platform with on-chip droplet-based manipulation, multiplexing and sensing. In 2024 IEEE International Solid-State Circuits Conference (ISSCC) 324–326 (IEEE, 2024).

  • Hierlemann, A., Frey, U., Hafizovic, S. & Heer, F. Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc. IEEE 99, 252–284 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Welch, D. & Christen, J. B. Seamless integration of CMOS and microfluidics using flip chip bonding. J. Micromech. Microeng. 23, 035009 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dong, R., Liu, Y., Mou, L., Deng, J. & Jiang, X. Microfluidics‐based biomaterials and biodevices. Adv. Mater. 31, e1805033 (2018).

  • van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, T. & Morgan, H. Single-cell microfluidic impedance cytometry: a review. Microfluid. Nanofluid. 8, 423–443 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 3, e1603221 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpenter, A. C., Paulsen, I. T. & Williams, T. C. Blueprints for biosensors: design, limitations, and applications. Genes 9, 375 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Au, A. K., Bhattacharjee, N., Horowitz, L. F., Chang, T. C. & Folch, A. 3D-printed microfluidic automation. Lab Chip 15, 1934–1941 (2015).

    CAS 

    Google Scholar
     

  • Paguirigan, A. L. & Beebe, D. J. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30, 811–821 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, S., Zhang, J., Yuan, D. & Li, W. Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38, 238–249 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Battat, S., Weitz, D. A. & Whitesides, G. M. An outlook on microfluidics: the promise and the challenge. Lab Chip 22, 530–536 (2022).

    CAS 

    Google Scholar
     

  • Atkinson, J. T., Chavez, M. S., Niman, C. M. & El‐Naggar, M. Y. Living electronics: a catalogue of engineered living electronic components. Microb. Biotechnol. 16, 507–533 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diorio, C., Hsu, D. & Figueroa, M. Adaptive CMOS: from biological inspiration to systems-on-a-chip. Proc. IEEE 90, 345–357 (2002).

    Article 

    Google Scholar
     

  • Mosadegh, B., Bersano-Begey, T., Park, J. Y., Burns, M. A. & Takayama, S. Next-generation integrated microfluidic circuits. Lab Chip 11, 2813–2818 (2011).


    Google Scholar
     

  • Lashkaripour, A., Silva, R. & Densmore, D. Desktop micromilled microfluidics. Microfluid. Nanofluid. 22, 31 (2018).

  • Khan, S. M., Gumus, A., Nassar, J. M. & Hussain, M. M. CMOS enabled microfluidic systems for healthcare based applications. Adv. Mater. 30, e1705759 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Karim, A. S. et al. Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists. Nat. Commun. 15, 5425 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y. et al. A review of electrochemical electrodes and readout interface designs for biosensors. IEEE Open J. Solid-State Circuits Soc. 3, 76–88 (2023).

    Article 

    Google Scholar
     

  • Dixon, T. A., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datta-Chaudhuri, T., Smela, E. & Abshire, P. A. System-on-chip considerations for heterogeneous integration of CMOS and fluidic bio-interfaces. IEEE Trans. Biomed. Circuits Syst. 10, 1129–1142 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Brooks, S. M. & Alper, H. S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 12, 1390 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2018).

    Article 

    Google Scholar
     

  • Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muluneh, M. & Issadore, D. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics. Lab Chip 14, 4552–4558 (2014).

    CAS 

    Google Scholar
     

  • Zargaryan, A., Farhoudi, N., Haworth, G., Ashby, J. F. & Au, S. H. Hybrid 3D printed-paper microfluidics. Sci. Rep. 10, 18379 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H. & Densmore, D. Fluigi. ACM J. Emerg. Technol. Comput. Syst. 11, 1–19 (2014).

    Article 

    Google Scholar
     

  • Kim, S. J. et al. The bottom of the memory hierarchy: semiconductor and DNA data storage. MRS Bull. 48, 547–559 (2023).

    Article 

    Google Scholar
     

  • Ros, P. M., Miccoli, B., Sanginario, A. & Demarchi, D. Low-power architecture for integrated CMOS bio-sensing. In 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2017).

  • Perry, J. M., Soffer, G., Jain, R. & Shih, S. C. C. Expanding the limits towards ‘one-pot’ DNA assembly and transformation on a rapid-prototype microfluidic device. Lab Chip 21, 3730–3741 (2021).

    CAS 

    Google Scholar
     

  • Ahrar, S., Raje, M., Lee, I. C. & Hui, E. E. Pneumatic computers for embedded control of microfluidics. Sci. Adv. 9, eadg0201 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer, V., Murali, P., Paredes, J., Liepmann, D. & Boser, B. Encapsulation of integrated circuits in plastic microfluidic systems using hot embossing. In 2015 Transducers — 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 1822–1825 (IEEE, 2015).

  • Gopinathan, K. A., Mishra, A., Mutlu, B. R., Edd, J. F. & Toner, M. A microfluidic transistor for automatic control of liquids. Nature 622, 735–741 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, B. & Hassibi, A. Biosensor systems in standard CMOS processes: fact or fiction? In 2008 IEEE International Symposium on Industrial Electronics 2045–2050 (IEEE, 2008).

  • Singh, R., Manickam, A. & Hassibi, A. CMOS biochips for hypothesis-driven DNA analysis. In 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings 484–487 (IEEE, 2014).

  • Olanrewaju, A., Beaugrand, M., Yafia, M. & Juncker, D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18, 2323–2347 (2018).

    CAS 

    Google Scholar
     

  • Li, J., Ha, N. S., ‘Leo’ Liu, T., van Dam, R. M. & Kim, C.-J. ‘C. J. ’ Ionic-surfactant-mediated electro-dewetting for digital microfluidics. Nature 572, 507–510 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pollack, M. G., Shenderov, A. D. & Fair, R. B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96 (2002).

  • Moragues, T. et al. Droplet-based microfluidics. Nat. Rev. Methods Primers 3, 32 (2023).

  • Ding, Y., Howes, P. D. & deMello, A. J. Recent advances in droplet microfluidics. Anal. Chem. 92, 132–149 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lenshof, A. & Laurell, T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39, 1203–1217 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, J. B. et al. Microfluidics: innovations in materials and their fabrication and functionalization. Anal. Chem. 92, 150–168 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsur, E. E. Computer-aided design of microfluidic circuits. Annu. Rev. Biomed. Eng. 22, 285–307 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanka, R., Lippai, J., Samarasekera, D., Nemsick, S. & Densmore, D. 3DμF — interactive design environment for continuous flow microfluidic devices. Sci. Rep. 9, 9166 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. A threshold-based bioluminescence detector with a CMOS-integrated photodiode array in 65 nm for a multi-diagnostic ingestible capsule. IEEE J. Solid-State Circuits 58, 838–851 (2023).

    Article 

    Google Scholar
     

  • Gregor, C., Gwosch, K. C., Sahl, S. J. & Hell, S. W. Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. Proc. Natl Acad. Sci. USA 115, 962–967 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying, D. & Hall, D. A. Current sensing front-ends: a review and design guidance. IEEE Sens. J. 21, 22329–22346 (2021).

    Article 

    Google Scholar
     

  • Mulleti, S., Bhandari, A. & Eldar, Y. C. Power-aware analog to digital converters. In Applied and Numerical Harmonic Analysis 415–452 (Birkhäuser, 2023).

  • Yasar, A. & Yazicigil, R. T. Physical-layer security for energy-constrained integrated systems: challenges and design perspectives. IEEE Open J. Solid-State Circuits Soc. 3, 262–273 (2023).

    Article 

    Google Scholar
     

  • De la Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrakasan, A. P., Verma, N. & Daly, D. C. Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 10, 247–274 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercier, P. P., Lysaght, A. C., Bandyopadhyay, S., Chandrakasan, A. P. & Stankovic, K. M. Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30, 1240–1243 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, A., Highsmith Calhoun, B., & Chandrakasan, A. P. Sub-threshold design for ultra low-power systems. In Series on Integrated Circuits and Systems (Springer, 2006).

  • Farrar, J. T., Berkley, C. & Zworykin, V. K. Telemetering of intraenteric pressure in man by an externally energized wireless capsule. Science 131, 1814 (1960).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeknami, A. F. et al. A 0.3-V CMOS biofuel-cell-powered wireless glucose/lactate biosensing system. IEEE J. Solid-State Circuits 53, 3126–3139 (2018).

    Article 

    Google Scholar
     

  • Dong, K. et al. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment. Biosens. Bioelectron. 41, 916–919 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Damak, D. & Chandrakasan, A. P. Solar energy harvesting system with integrated battery management and startup using single inductor and 3.2nW quiescent power. In 2015 Symposium on VLSI Circuits (VLSI Circuits) C280–C281 (IEEE, 2015).

  • Kadirvel, K. et al. A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting. In 2012 IEEE International Solid-State Circuits Conference – (ISSCC) 106–108 (IEEE, 2012).

  • Ramadass, Y. K. & Chandrakasan, A. P. A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage. In 2010 IEEE International Solid-State Circuits Conference — (ISSCC) 486–487 (IEEE, 2010).

  • Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadat Mousavi, P. et al. A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat. Chem. 12, 48–55 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Amalfitano, E. et al. A glucose meter interface for point-of-care gene circuit-based diagnostics. Nat. Commun. 12, 724 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra‐thin flexible encapsulating materials for soft bio‐integrated electronics. Adv. Sci. 9, e2202980 (2022).

    Article 

    Google Scholar
     

  • Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, V., Issadore, D. A. & Aflatouni, F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. Lab Chip 23, 2553–2576 (2023).

    CAS 

    Google Scholar
     

  • McClune, C. J., Alvarez-Buylla, A., Voigt, C. A. & Laub, M. T. Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space. Nature 574, 702–706 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, P. et al. De novo design of an intercellular signaling toolbox for multi-channel cell–cell communication and biological computation. Nat. Commun. 11, 4226 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marken, J. P. & Murray, R. M. Addressable and adaptable intercellular communication via DNA messaging. Nat. Commun. 14, 2358 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sexton, J. T. & Tabor, J. J. Multiplexing cell–cell communication. Mol. Syst. Biol. 16, e9618 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaFleur, T. L., Hossain, A. & Salis, H. M. Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria. Nat. Commun. 13, 5159 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, M. G. F., Seo, M.-H., Nim, S., Corbi-Verge, C. & Kim, P. M. Protein engineering by highly parallel screening of computationally designed variants. Sci. Adv. 2, e1600692 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roehner, N. et al. GOLDBAR: a framework for combinatorial biological design. ACS Synth. Biol. 13, 2899–2911 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naseri, G. & Koffas, M. A. G. Application of combinatorial optimization strategies in synthetic biology. Nat. Commun. 11, 2446 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Article 

    Google Scholar
     

  • Castle, S. D., Stock, M. & Gorochowski, T. E. Engineering is evolution: a perspective on design processes to engineer biology. Nat. Commun. 15, 3640 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, S. M. D. & Densmore, D. Hardware, software, and wetware codesign environment for synthetic biology. Biodes. Res. 2022, 9794510 (2022).

  • Yazicigil, R. T. et al. Beyond crypto: physical-layer security for internet of things devices. IEEE Solid-State Circuits Mag. 12, 66–78 (2020).

    Article 

    Google Scholar
     

  • Vakhter, V., Soysal, B., Schaumont, P. & Guler, U. Threat modeling and risk analysis for miniaturized wireless biomedical devices. IEEE Internet Things J. 9, 13338–13352 (2022).


    Google Scholar
     

  • Vatambeti, R. et al. Prediction of DDoS attacks in Agriculture 4.0 with the help of prairie dog optimization algorithm with IDSNet. Sci. Rep. 13, 15371 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maraveas, C., Rajarajan, M., Arvanitis, K. G. & Vatsanidou, A. Cybersecurity threats and mitigation measures in Agriculture 4.0 and 5.0. Smart Agric. Technol. 9, 100616 (2024).


    Google Scholar
     

  • Rettore de Araujo Zanella, A., da Silva, E. & Pessoa Albini, L. C. Security challenges to smart agriculture: current state, key issues, and future directions. Array 8, 100048 (2020).

    Article 

    Google Scholar
     



  • Source link

    Categories
    NATURALEZA

    Um teste de células fetais para a doença de Parkinson traz lições para o campo


    Nature Biotechnology, publicado online: 26 de junho de 2025; Dois: 10.1038/S41587-025-02742-5

    Um ensaio clínico tenta padronizar o transplante de células fetais e destaca os desafios a serem abordados nos próximos estudos que usam progenitores de neurônios derivados de células-tronco.



    Source link

    Categories
    NATURALEZA

    Lipid nanoparticle screening in nonhuman primates with minimal loss of life


    mRNA synthesis

    The template for in vitro transcription (IVT) of glycosylphosphatidylinositol-aVHH was purchased from Integrated DNA Technologies. The sequences (Supplementary Table 1) were codon-optimized for mouse (primary species) and human (secondary species) using the GenSmart Codon Optimization tool (GenScript). The linear IVT templates were amplified by PCR using forward and T120 extended reverse primers, then purified with the DNA Clean & Concentrator Kit (Zymo Research). The MEGAscript T7 Transcription Kit (Invitrogen) was used for IVT for 2 h at 37 °C. During the reaction, mRNA was capped with Cap 1 (BOC Sciences) and all UTPs were modified with N1-methylpseudouridine-5′-triphosphate (N1-MeΨTP, BOC Sciences). After 2 h, DNase I was treated to remove the template DNA for 15 min at 37 °C. The resulting mRNA was purified by lithium chloride precipitation. Purified RNA products were analyzed by gel electrophoresis to ensure purity.

    Nanoparticle formulation

    LNPs were formulated with aVHH mRNA23,24,25. The lipid components were diluted in 100% ethanol. Seventy-two different compositions are listed in Supplementary Fig. 2. DNA barcodes (Integrated DNA Technologies; sequences listed in Supplementary Table 1) were mixed in the nucleic acid phase at a 1:10 ratio of DNA barcodes to mRNA in 25 mM sodium acetate buffer. The phases were then microfluidically mixed32,33 using Ignite (Precision Nanosystems) at a flow rate of 3:1 (nucleic acid:lipid phases) at a total flow rate of 12 ml min−1. LNPs were diluted 1:42 in sterile 10 mM Tris buffer and dialyzed by centrifugation in 100-kDa ultracentrifuge tubes (Amicon) at 4 °C. Then the LNPs were sterile-filtered with a 0.22-µm filter before administration or downstream analysis.

    LNP characterization

    Hydrodynamic diameters and PDIs of LNPs were measured using high-throughput dynamic light scattering (DynaPro Plate Reader II, Wyatt). DYNAMICS software (version 8.3.1.1145, Wyatt) was used for data collection. Endotoxin levels were measured with the Pierce Chromogenic Endotoxin Quant Kit (Thermo Scientific) before administration (Supplementary Fig. 4). The standard range of 0.01–0.1 endotoxin units (EU) ml−1 was used following the manufacturer’s protocol. Encapsulated mRNA and encapsulation efficiency were evaluated using Quant-iT RiboGreen RNA assay kit (Thermo Fisher Scientific). In brief, an equal volume of 6 ng μl−1 LNP and 1× Tris–EDTA (TE; Thermo Fisher) or 2% Triton X-100 (Sigma-Aldrich) in 1× TE were mixed. After incubation at 37 °C for 10 min, an equal volume of 1:100 of RiboGreen reagent (Thermo Fisher) was added to each well. The fluorescence was quantified using a plate reader (PerkinElmer Victor X4 Microplate Reader) at an excitation wavelength of 485 nm and an emission wavelength of 528 nm. PerkinElmer 2030 Workstation software 4.0 (version 4.00.0.15) was used for data collection. The zeta potential was measured using a Malvern Zetasizer Nano Z. Zetasizer software (version 8.02) was used for data collection. The measurement was done with the refractive index of 1.4, dispersant viscosity of 0.882 cP and refractive index of 1.33.

    Freeze–thawing of LNPs

    Sucrose (National Formulary, European Pharmacopoeia, Japanese Pharmacopoeia, Chinese Pharmacopoeia, high purity, low endotoxin; Fisher Scientific) was dissolved in a sterile 10 mM Tris buffer at 60% (w/v). LNPs in 10 mM Tris buffer were mixed with 60% (w/v) sucrose solution at 5:1 (v/v LNP:sucrose) for a final concentration of sucrose at 10% (w/v). LNPs were then flash-frozen in liquid nitrogen. Hydrodynamic diameter, PDI and encapsulation efficiency were measured before and after freeze–thawing. Frozen LNPs were stored at ≤−120 °C in the vapor phase of liquid nitrogen. For thawing, LNPs were incubated at room temperature for 20 min.

    LNP selection for pooling

    After formulation, LNPs with PDI under 0.4 were selected (71 out of 72 LNPs). Then, LNPs with encapsulation efficiency above 85% were selected (50 out of 71 LNPs). As a third step, we measured the PDI and hydrodynamic diameter of these 50 LNPs after they were mixed with 10% sucrose, frozen and thawed. Forty-five formulations remained monodisperse with a hydrodynamic diameter between 50 nm and 150 nm and a PDI below 0.3. The frozen aliquots of selected 45 LNPs were thawed and pooled to assess the physical characteristics. Hydrodynamic diameter, PDI, zeta potential, encapsulation efficiency, encapsulated mRNA, endotoxin level and pKa were measured for the LNP pool. The LNP pool was also imaged by cryo-TEM. Before each administration, 1-ml aliquots of those 45 frozen LNPs were thawed at room temperature and pooled. Each time, the hydrodynamic diameter, PDI, zeta potential, encapsulation efficiency, encapsulated mRNA and endotoxin level were measured.

    Cryo-TEM

    LNP samples were placed on 300-mesh copper grids, with a holey carbon substrate (1.2-µm holes spaced by 1.3 µm; C-flat, Electron Microscopy Sciences). Grids were glow-discharged (negative charge) for 15 s using a GloQube Plus glow discharge system (Quorum Tech). Samples (3 µl) were blotted with filter paper for 1 s at room temperature and 100% humidity and plunge-frozen into liquid ethane using a Vitrobot Mark IV (Thermo Scientific). Cryo-EM grids were stored in liquid nitrogen until cryo-TEM data acquisition. Cryo-EM grids were loaded under liquid nitrogen temperatures, using a Gatan 914 cryo-TEM sample holder, into a JEOL JEM-2200FS TEM (JEOL) operating at 200 keV. Micrographs were acquired under low-dose conditions using the Serial EM software (v4.1.6)57 with a DE20 direct electron detector device (Direct Electron), at nominal magnifications of ×40,000 or ×80,000, yielding pixel sizes of 1.4 Å and 0.8 Å per pixel, respectively.

    pK
    a assay

    A stock solution of 10 mM HEPES (Sigma-Aldrich), 10 mM 2-(N-morpholino)ethanesulfonic acid (Sigma-Aldrich), 10 mM sodium acetate (Sigma-Aldrich) and 140 mM sodium chloride (Sigma-Aldrich) was prepared and pH adjusted with hydrogen chloride and sodium hydroxide (pH 3–10). Using four replicates for each pH, 140 μl pH-adjusted buffer was added to a 96-well plate, followed by adding 5 μl of 2-(p-toluidino)-naphthalene-6-sulfonic acid (60 μg ml−1). LNPs (5 µl) were added to each well. After 5 min of incubation at 300 rpm, fluorescence (excitation 325 nm, emission 435 nm) was measured using a plate reader.

    Mouse experiments

    All mouse experiments were performed in accordance with the approval of the Emory University School of Medicine’s Institutional Animal Care and Use Committee. All animals were housed in the Emory University animal facilities. C57BL/6J mice were purchased from The Jackson Laboratory. All mice were housed in the Emory University animal facilities in conventional cages with a 12:12 h light–dark cycle and ad libitum access to food and water. The vivarium was kept at 23 °C with 50% humidity. Mice (N = 3) were injected intravenously with LNP pool (0.5 mg kg−1) in the lateral tail vein.

    Mouse cell isolation and staining

    Mice were euthanized by CO2 asphyxiation, followed by cervical dislocation and perfusion with 5 ml of 1× phosphate-buffered saline (PBS) through the right atrium. Liver tissues were finely minced and then placed in a digestive enzyme solution including collagenase type I (Sigma-Aldrich), collagenase XI (Sigma-Aldrich) and hyaluronidase (Sigma-Aldrich). The mixture was then incubated at 37 °C, 550 rpm for 45 min (refs. 58,59). For bone marrow, both ends of the femur were cut and 5 ml of RPMI1640 (Sigma-Aldrich) per femur was flushed using a 25-gauge needle. Spleens were finely minced and placed in RPMI1640. Cell suspensions were filtered through a 70-µm mesh. Blood was collected from terminal cardiac puncture, then red blood cells were lysed by ACK lysing buffer (Quality Biological) following the manufacturer’s protocol. Cells were stained to identify specific cell populations and sorted using the Cytek Aurora cell sorter. SpectroFlo software (version 1.3.1, Cytek) was used for data collection. The anti-mouse antibody clones and dilutions used were the following: anti-mouse erythroid cells (TER119, BioLegend, 1:500), anti-CD31 (390, BD, 1:500), anti-CD45.2 (104, BioLegend, 1:500), anti-CD19 (6D5, BioLegend, 1:500), anti-CD3 (17A2, BioLegend, 1:500), anti-CD11c (N418, BioLegend, 1:500) and anti-CD11b (M1/70, BioLegend, 1:500). LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Invitrogen) was used for live cell gating (dilution 1:5000). Flow cytometry staining panels and gating strategies are shown in Supplementary Figs. 6 and 7. Mice injected with 10 mM Tris buffer were used as gating controls.

    Rhesus monkey studies

    All animal procedures conformed to the requirements of the Animal Welfare Act, and protocols were approved before implementation by Emory University School of Medicine’s Institutional Animal Care and Use Committee. The LNPs were thawed, screened (for example, sterility and endotoxin) and then aliquoted for intravenous injection under aseptic conditions in rhesus monkeys (N = 6; 1–17 years of age, 2.3–6 kg; 3 males and 3 females) comparing the two clinical statuses (healthy versus gastrointestinal inflammation); one uninjected control animal (11 years, 7.2 kg, female) and one uninjected EoL animal (17 years, 9 kg, male) were included. Animals were sedated with telazol (5–8 mg kg−1 intramuscularly), a blood sample was collected at time point 0 and a slow intravenous injection of LNPs was performed using the aseptic technique. Animals were pretreated with diphenhydramine, and no adverse reactions were observed. Complete blood counts and clinical chemistry panels were evaluated before and after administration and found to be within normal limits. Animals were sedated 24 h after administration and weighed, their final blood samples were collected (serum and peripheral blood mononuclear cells) and then the animals were euthanized (overdose of pentobarbital). Tissues were collected and weighed including the liver, spleen and bone marrow from all long bones.

    Rhesus cell isolation and staining

    Liver tissues were cut into 0.5-cm cubes, placed into a digestive enzyme solution containing 12 ml of R5 medium (RPMI1640 supplemented with 5% fetal bovine serum) supplemented with 150 µg ml−1 of collagenase type I (Sigma-Aldrich), and processed using a GentleMACS Octo Dissociator with heaters (Miltenyi Biotec). The samples were processed using the following protocol: incubation at 37 °C, two sets of clockwise–counterclockwise agitations at 300 rpm for 20 s, two sets of clockwise–counterclockwise agitations at 50 rpm for 40 min and two sets of clockwise–counterclockwise agitations at 300 rpm for 20 s. Spleen tissues were cut into 0.5-cm cubes, placed into 5 ml of R5 medium and processed using a GentleMACS Octo Dissociator with heaters (Miltenyi Biotec) using the m_spleen_1 program. Liver and spleen tissues were taken off the GentleMACS, and bone marrow samples were resuspended in 10 ml of R5 medium. All samples were passed through a 70-µm mesh prewet with 1 ml of R5 medium. After centrifugation at 500g for 10 min, all samples were incubated with ACK lysis buffer for 5 min. Single-cell suspensions were then washed twice with PBS. Forty million cells were incubated with Fc receptor binding inhibitor polyclonal antibody (Invitrogen) for 20 min at 4 °C. Cells were stained to identify specific cell populations and sorted using the Cytek Aurora cell sorter. SpectroFlo software (version 1.3.1, Cytek) was used for data collection. The antibody clones and dilutions used were the following: anti-human CD31 (WM59, BD, 1:50), anti-human ASGPR (REA608, Miltenyi, 1:50), anti-NHP CD45 (D058-1283, BD, 1:50), anti-NHP CD3 (10D12, Miltenyi, 1:50), anti-NHP CD20 (2H7, BioLegend, 1:50), anti-NHP HLA-DR (G46-6/L243, BD, 1:50), anti-NHP CD16 (3G8, BD, 1:50) and anti-NHP CD14 (M5E2, BD, 1:50). The LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Invitrogen) was used for live cell gating (dilution 1:5,000). Anti-camelid VHH antibody (clone 96A3F5, GenScript) was used for detecting aVHH expression. Flow cytometry staining panels and gating strategies are shown in Supplementary Figs. 8 and 9. All remaining cells were aliquoted into 10 million cells and cryopreserved in CryoStor CS10 (StemCell Technologies). In all cases, cryopreserved samples from the respective uninjected control animals were used as gating controls.

    Rhesus cytokine analysis

    Rhesus monkey sera were sent to IDEXX BioAnalytics and tested on the Milliplex MAP Non-Human Primate Cytokine Magnetic Bead Panel (Millipore, cat. no. PCYTMG-40K-PX23) according to the manufacturer’s protocol. Data were collected by xPONENT 4.3 (Luminex), and data analysis was completed using BELYSA 1.1.0 software. The data collected by the instrument software are expressed as median fluorescence intensity. Analyte standards, quality controls and sample median fluorescence intensity values were adjusted for background. Calibrator data were fit to either a five-parameter logistic or four-parameter logistic model depending on best fit to produce accurate standard curves for each analyte. Quality control and sample data were interpolated from the standard curves and then adjusted according to dilution factor to provide calculated final concentrations of each analyte present in the sample. Qualified assay ranges are presented in Supplementary Table 1.

    Barcode counts

    For FACS-sorted aVHH+ cells from mice and NHPs, DNA barcodes were isolated by QuickExtract DNA Extraction Solution (Lucigen) following the manufacturer’s protocol. The samples were then amplified using KAPA HiFi HotStart Ready Mix (Roche), following the manufacturer’s protocol. Next-generation sequencing runs were performed using multiplexed runs on Illumina MiniSeq23,60. In brief, the results were processed using a custom Python-based tool to extract raw barcode counts for each cell type. These raw counts were then normalized using R before further analysis. Counts for each particle were normalized to the barcoded LNP mixture injected into mice.

    Single-cell multiomics preparation

    The BD Rhapsody Single Cell Analysis System was used for single-cell multiomics. Single-cell suspensions were stained with oligo-tagged anti-camelid VHH antibodies (5′-CCTTGGCACCCGAGAATTCCAAAGTATGCCCTACGABAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A*A-3′ chemically conjugated to MonoRab rabbit anti-camelid VHH antibody, mAb, GenScript; the asterisks denote phosphorothioate bonds). The final concentration was 0.5 mg ml−1 by protein weight. The dilution for staining was 1:2,000. After washing the labeled cells twice with PBS, the cell viability and numbers were recorded for each sample. The cells were then pooled at the same ratio, and a BD Rhapsody cartridge was loaded with 60,000 cells. cDNA libraries were prepared using the BD Rhapsody Whole Transcriptome Analysis Amplification Kit following the BD Rhapsody System mRNA Whole Transcriptome Analysis and Sample Tag Library Preparation protocol (BD Biosciences). The final libraries were quantified using a Qubit fluorometer and sent to Novogene for sequencing. After the assessment of library quality using Bioanalyzer (Agilent), sequencing was performed by Illumina NovaSeq X Plus PE150 at Novogene.

    Processing of single-cell multiomics sequencing data

    The data were processed using STARsolo (v2.7.9a)61 in R (v4.3.1). All samples were mapped to rheMac10, and only exonic regions were counted. All output files were loaded into Seurat (v5.0.1). Global-scaling normalization was used for the aVHH expression assay in a Seurat object. The process normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor 10,000 and log-transforms the result. DoubletFinder (v3) was used to identify doublets62. This was followed by principal component analysis dimensional reduction and UMAP clustering. aVHH oligo-tag counts were combined with RNA counts in Seurat and treated similarly to other multimodal datasets such as cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)63. Visualization of gene and aVHH expression levels was performed using R/Seurat commands (FeaturePlot and DotPlot). For the integration of multiple Seurat objects, Harmony algorithm (v.1.2.1) was used. For UMAP representation in Fig. 3a,d,g, cell clusters were manually annotated in Seurat with marker genes listed in Supplementary Figs. 1618.

    Statistics and reproducibility

    A minimum of three biological replicates were analyzed for quantification, except for untreated rhesus monkeys (N = 1). For the representative cryo-TEM image (Fig. 1i), four wide-field images and at least ten high-magnification images (×40,000) were collected from one batch of LNP pool with a representative size distribution. All data are presented as the mean ± standard deviation or standard error of mean. Statistical analysis between groups was performed using GraphPad Prism (versions 9.5 and 10). For data with multiple groups, the statistically significant differences were assessed using two-way analysis of variance with Tukey’s multiple-comparison test. For comparisons between two groups, unpaired two-tailed Student’s t-tests were used. The sample sizes (biological replicates), specific statistical tests and main effects of our statistical analyses for each experiment are detailed in each figure legend. A P value of less than 0.05 was considered significant.

    Reporting summary

    Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.



    Source link

    Categories
    NATURALEZA

    Prime editor-based high-throughput screening reveals functional synonymous mutations in human cells


  • Kimura, M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267, 275–276 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 606, 725–731 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruglyak, L. et al. Insufficient evidence for non-neutrality of synonymous mutations. Nature 616, E8–E9 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuevas, J. M., Domingo-Calap, P. & Sanjuan, R. The fitness effects of synonymous mutations in DNA and RNA viruses. Mol. Biol. Evol. 29, 17–20 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kristofich, J. et al. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet. 14, e1007615 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, I. M., Bowman, M. A., Soto Santarriaga, I. F., Rodriguez, A. & Clark, P. L. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc. Natl Acad. Sci. USA 117, 3528–3534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebeuf-Taylor, E., McCloskey, N., Bailey, S. F., Hinz, A. & Kassen, R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. eLife 8, e45952 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Supek, F., Minana, B., Valcarcel, J., Gabaldon, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buske, O. J., Manickaraj, A., Mital, S., Ray, P. N. & Brudno, M. Identification of deleterious synonymous variants in human genomes. Bioinformatics 29, 1843–1850 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S. et al. Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biol 20, 20 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S. et al. Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry. Sci. China Life Sci. 65, 701–717 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, Y. et al. A pan-cancer analysis of synonymous mutations. Nat. Commun. 10, 2569 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28, 573–580 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathy, C. J. P. et al. A complete allosteric map of a GTPase switch in its native cellular network. Cell Syst. 14, 237–246 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 41, 1151–1159 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: unbiased boosting with categorical features. In Proc 32nd International Conference on Neural Information Processing Systems (eds Bengio, S. et al.) 6639–6649 (NIPS, 2018).

  • Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, N. et al. Aberrant splicing prediction across human tissues. Nat. Genet. 55, 861–870 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barry, T., Wang, X., Morris, J. A., Roeder, K. & Katsevich, E. SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis. Genome Biol 22, 344 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nackley, A. G. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930–1933 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bae, H. & Coller, J. Codon optimality-mediated mRNA degradation: linking translational elongation to mRNA stability. Mol. Cell 82, 1467–1476 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhindsa, R. S. et al. A minimal role for synonymous variation in human disease. Am. J. Hum. Genet. 109, 2105–2109 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuella-Martin, R. et al. Functional interrogation of DNA damage response variants with base editing screens. Cell 184, 1081–1097 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dujon, B. Basic principles of yeast genomics, a personal recollection. FEMS Yeast Res. 15, fov047 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7, 98–108 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. 36, 1203–1210 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Radrizzani, S., Kudla, G., Izsvak, Z. & Hurst, L. D. Selection on synonymous sites: the unwanted transcript hypothesis. Nat. Rev. Genet. 25, 431–448 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, W., Zhou, T. & Wilke, C. O. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput. Biol. 6, e1000664 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 628, 639–647 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, X. et al. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol. Cell 83, 4633–4645 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould, S. I. et al. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02172-9 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cirincione, A. et al. A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening. Nat. Methods 22, 92–101 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belli, O., Karava, K., Farouni, R. & Platt, R. J. Multimodal scanning of genetic variants with base and prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02439-1 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, Y., Oh, H. C., Lee, S. & Kim, H. H. Saturation profiling of drug-resistant genetic variants using prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02465-z (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herger, M. et al. High-throughput screening of human genetic variants by pooled prime editing. Cell Genom. 5, 100814 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales, J. et al. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature 604, 310–315 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics 13, 31 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, P. et al. Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat. Biotechnol. 39, 1403–1413 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    Article 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, B. et al. Noncoding loci without epigenomic signals can be essential for maintaining global chromatin organization and cell viability. Sci. Adv. 7, eabi6020 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K.edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. et al. Data and code related to ‘Prime editor-based high-throughput screening reveals functional synonymous mutations in human cells’. Zenodo https://doi.org/10.5281/zenodo.14639522 (2025).



  • Source link

    Categories
    NATURALEZA

    Inglaterra pronta para a criação de precisão de luz verde


    Você tem acesso total a este artigo por meio de sua instituição.

    O governo do Reino Unido está perto de aprovar regras para plantas de precisão na Inglaterra. Em maio, o Parlamento publicado Projeto de legislação que permitirá um novo sistema regulatório, conforme estabelecido na Lei de Tecnologia Genética (criação de precisão) 2023.

    A criação de precisão envolve a introdução de alterações genéticas no DNA de plantas ou animais usando técnicas como edição de genes. O nova estrutura regulatória O objetivo é introduzir plantas editadas por genes com características como necessidade reduzida de pesticidas e fertilizantes, emissões mais baixas e custos reduzidos para os agricultores. Como as mudanças genéticas são limitadas ao que pode ter sido obtido por meio de criação tradicional, as culturas de precisão não representam maior risco para a saúde ou o meio ambiente do que as culturas tradicionalmente criadas. Como tal, a nova estrutura regulatória será distinta daqueles organismos geneticamente modificados (OGMs) que governam a inserção de DNA estranho no genoma.

    Se o rascunho for aprovado pelas duas casas do Parlamento, as regras permitirão o uso comercial da edição de genes. Isso permitirá que cientistas e criadores de plantas desenvolvam variedades de culturas com características que conferem resiliência às mudanças climáticas, resistência a doenças ou nutrição aprimorada. Essas colheitas podem incluir culturas de oleaginosas enriquecidas em óleos ω-3, batatas não protegidas para reduzir o desperdício de alimentos, tomates enriquecidos com vitamina D3e plantas de morango com cinco vezes o rendimento.

    Muitos países, incluindo Estados Unidos, Argentina, Brasil, Japão, Austrália e Canadá, adotaram novas técnicas genômicas (como o CRISPR) na agricultura, implementando regulamentos que classificam as culturas editadas por genes como equivalentes às raças convencionais. A UE também é em desenvolvimento Uma estrutura regulatória mais descontraída que isenta as plantas de regras OGM produzidas com novas técnicas genômicas que poderiam ocorrer naturalmente ou através de métodos de criação convencionais. A Escócia e o País de Gales, que optaram por sair da Lei de Reprodução de Precisão, também podem reconsiderar.



    Source link

    Categories
    NATURALEZA

    Um transposase associado ao CRISPR evoluído por laboratório adapta às células humanas


    As transposasases associadas ao CRISPR (elenco) são um candidato atraente para aplicações de edição de genoma, pois permitem a inserção de grandes cargas de DNA sem criar quebras de fita dupla. No entanto, os sistemas fundidos mostraram atividade limitada em células humanas. Em um artigo publicado em CiênciaWitte et al. Aplique a evolução contínua assistida por fagos (PACE) para direcionar a rápida evolução de novas variantes do elenco, adquirindo um sistema fundido capaz de integrar eficientemente cargas do tamanho de genes nas células humanas.

    Rodadas de ritmo iterativas produziram um TNSB evoluído-um componente do tipo se maquinaria de transposição fundida-com eficiência de integração nas células HEK mais de 200 vezes maior que a do tipo selvagem. O TNSB evoluído continha dez mutações que aumentam a atividade, abrangendo vários domínios, sugerindo que o ritmo otimizou diversas funcionalidades para melhorar o desempenho do TNSB e que a obtenção dessa variante através da engenharia racional de proteínas teria sido improvável. Notavelmente, o TNSB evoluído não exigiu suplementação com a proteína acessória CLPX, um fator citotóxico usado anteriormente para aumentar a eficiência da edição de fundição.



    Source link

    Categories
    NATURALEZA

    FDA diz que os porcos GM são seguros para comer


    Você tem acesso total a este artigo por meio de sua instituição.

    Os porcos geneticamente modificados para resistir a um vírus devastador agora são aprovados para o consumo humano nos Estados Unidos. O gênero British Animal Genetics Company, com sede em Basingstoke, anunciou em abril que a Food and Drug Administration (FDA) dos EUA havia aprovado seus porcos com edição de genes após uma longa revisão através do novo caminho regulatório de medicamentos investigacionais da agência.

    Os porcos são modificados para resistir à síndrome reprodutiva e respiratória porcina (PRRs), que é a doença suína mais economicamente prejudicial na América do Norte, Europa e Ásia. O vírus do RNA que faz com que os PRRs evoluem com frequência, e as vacinas não foram capazes de controlar a doença.

    O gênero usou CRISPR para desativar o gene CD163 porcino, que codifica o receptor de entrada do host para o vírus. O CD163 é expresso na superfície de macrófagos e monócitos maduros. Quando um dos domínios CD163 foi editado em porco, os animais tinham macrófagos alveolares pulmonares resistentes ao PRRSV e não mostraram sinais de infecção quando desafiados com o vírus. Os filhos desses porcos herdam o traço de resistência ao vírus. O trabalho deriva do pesquisar de Randall Prather na Universidade do Missouri, que publicou em Biotecnologia da natureza em 2016.

    A comercialização bem -sucedida exigirá aprovações nos principais mercados de exportação dos EUA – MEXICO, Canadá e Japão – porque os Estados Unidos são um exportador líquido de carne de porco. O gênero já recebeu uma luz verde dos reguladores no Brasil, Colômbia e República Dominicana, que decidiu que os porcos serão regulamentados da mesma forma que os suínos não engenhados. A empresa também está buscando aprovação regulatória na China, que é o maior consumidor de carne de porco.

    O FDA aprovou anteriormente dois animais geneticamente modificados para o suprimento de alimentos. O primeiro foi um salmão geneticamente modificado Isso cresce mais rápido que seus colegas não modificados. Mas as vendas foram limitadas e seu desenvolvedor, Aquabounty, de Harvard, Massachusetts, está descontinuando as operações. O segundo, o Galsafe O porco do Revivicor em Blacksburg, Virgínia, é modificado para desativar a produção de uma molécula de açúcar chamada α-Gal que causa reações alérgicas em algumas pessoas. A empresa está trabalhando para usar os tecidos e órgãos desses porcos para xenotransplante.



    Source link

    Categories
    NATURALEZA

    A criança recebe a primeira terapia CRISPR personalizada


    Os editores básicos e principais prometem corrigir quase todas as variantes patogênicas conhecidas, mas seu desenvolvimento terapêutico é restrito a um punhado de mutações recorrentes devido ao alto custo de trazer o mercado de terapias genéticas. Escrevendo no New England Journal of MedicineMusunuru et al. Relatório sobre o rápido desenvolvimento de uma terapia de edição de base personalizada, fornecida a uma criança nascida com uma doença rara e entregue in vivo aos hepatócitos através de nanopartículas lipídicas.

    O paciente, que foi diagnosticado com uma doença metabólica rara do ciclo de uréia conhecido como deficiência de fosfato de carbamoílo 1 (CPS1) que impede a quebra adequada da proteína dos alimentos, recebeu a primeira dose de terapia de edição de base aos sete meses de idade. Dentro de dois meses, os autores desenvolveram uma linha celular abrigando dois CPS1 variantes identificadas no genoma do paciente e examinaram vários editores da base de adenina com guia rnas amarrar um daqueles CPS1 variantes. Eles selecionaram o editor de base mais eficiente e preciso, chamado K-ABE. Cinco meses após o nascimento, eles avaliaram a eficiência in vivo do K-ABE em um modelo de camundongo específico do paciente, mostrando até 42% de edição corretiva de fígado inteiro. Estudos de segurança em primatas e análises não humanos de edição fora do alvo em hepatócitos limparam o caminho para a aprovação regulatória.



    Source link

    Categories
    NATURALEZA

    CRISPR-TO Direciona o RNA para locais intracelulares definidos


    Embora a organização espacial do RNA seja central para funções celulares e mecanismos de doenças, suas consequências funcionais permanecem pouco compreendidas devido à falta de ferramentas para manipular a localização do RNA nas células. Escrevendo NaturezaHan et al. Introduzir Organização do Transcriptoma mediado por CRISPR (CRISPR-TO), um método que usa as propriedades que provocam RNA do DCAS13 morto de nuclease para transportar RNA endógeno para compartimentos subcelulares desejados. O CRISPR-TO funciona por dimerização induzível por produtos químicos e consiste em três componentes: um DCAS13 fundido com um domínio de uma dimerização, um sinal de localização subcelular ou proteína motora fundida com o outro domínio de dimerização e guia os RNAs direcionados ao RNA de interesse. O hormônio da planta ABA foi selecionado como indutor.

    Os autores testaram o CRISPR-TO, localizando vários mRNAs endógenos na membrana mitocondrial externa (OMM). Eles observaram a localização substancial do OMM dos mRNAs alvo, apesar de seus diferentes níveis de expressão. O uso de três locais de ligação ao DCAS13 em um mRNA alvo produziu 50,6% de localização na OMM.



    Source link