Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
Article
CAS
PubMed
Google Scholar
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
Article
CAS
PubMed
Google Scholar
Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).
Article
CAS
PubMed
Google Scholar
Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).
Article
CAS
PubMed
Google Scholar
Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).
Article
CAS
PubMed
Google Scholar
Ramaswamy, S. et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl Acad. Sci. USA 114, E1941–E1950 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Primers 2, 24 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian, Y., Tirrell, M. V. & LaBelle, J. L. Harnessing the therapeutic potential of biomacromolecules through intracellular delivery of nucleic acids, peptides, and proteins. Adv. Healthc. Mater. 11, 2102600 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Sig. Transduct. Target. Ther. 6, 53 (2021).
Article
CAS
Google Scholar
Zhao, Z., Anselmo, A. C. & Mitragotri, S. Viral vector‐based gene therapies in the clinic. Bioeng. Transl. Med. 7, e10258 (2021).
Article
PubMed
PubMed Central
Google Scholar
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Das, R., Kanjilal, P., Medeiros, J. & Thayumanavan, S. What’s next after lipid nanoparticles? A perspective on enablers of nucleic acid therapeutics. Bioconjug. Chem. 33, 1996–2007 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren, E., Apte, A., Sawant, R. R., Grunwald, J. & Torchilin, V. P. Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv. 18, 377–384 (2011).
Article
CAS
PubMed
Google Scholar
Schmidt, N., Mishra, A., Lai, G. H. & Wong, G. C. L. Arginine-rich cell-penetrating peptides. FEBS Lett. 584, 1806–1813 (2010).
Article
CAS
PubMed
Google Scholar
Derossi, D., Joliot, A. H., Chassaing, G. & Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).
Article
CAS
PubMed
Google Scholar
Krishnamurthy, S. et al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat. Commun. 10, 4906 (2019).
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Navarro, M. Advances in peptide-mediated cytosolic delivery of proteins. Adv. Drug Deliv. Rev. 171, 187–198 (2021).
Article
PubMed
Google Scholar
Boisguérin, P., Konate, K., Josse, E., Vivès, E. & Deshayes, S. Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines 9, 583 (2021).
Article
PubMed
PubMed Central
Google Scholar
Kim, W. & Chaikof, E. L. Recombinant elastin-mimetic biomaterials: emerging applications in medicine. Adv. Drug Deliv. Rev. 62, 1468–1478 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gagner, J. E., Kim, W. & Chaikof, E. L. Designing protein-based biomaterials for medical applications. Acta Biomater. 10, 1542–1557 (2014).
Article
CAS
PubMed
Google Scholar
Jenkins, I. C., Milligan, J. J. & Chilkoti, A. Genetically encoded elastin-like polypeptides for drug delivery. Adv. Healthc. Mater. 10, 2100209 (2021).
Article
CAS
Google Scholar
Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997).
Article
CAS
Google Scholar
Dreher, M. R. et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130, 687–694 (2008).
Article
CAS
PubMed
Google Scholar
Li, N. K., García Quiroz, F., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).
Article
CAS
PubMed
Google Scholar
Kim, W., Xiao, J. & Chaikof, E. L. Recombinant amphiphilic protein micelles for drug delivery. Langmuir 27, 14329–14334 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, W., Brady, C. & Chaikof, E. L. Amphiphilic protein micelles for targeted in vivo imaging. Acta Biomater. 8, 2476–2482 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, W. et al. Targeted antithrombotic protein micelles. Angew. Chem. Int. Ed. Engl. 54, 1461–1465 (2015).
Article
CAS
PubMed
Google Scholar
Yi, A., Sim, D., Lee, Y.-J., Sarangthem, V. & Park, R.-W. Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J. Nanobiotechnology 18, 15 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi, A., Sim, D., Lee, S.-B., Sarangthem, V. & Park, R.-W. Application of bioengineered elastin-like polypeptide-based system for targeted gene delivery in tumor cells. Biomater. Biosyst. 6, 100050 (2022).
CAS
PubMed
PubMed Central
Google Scholar
Eweje, F. et al. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 305, 122464 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, W., Thévenot, J., Ibarboure, E., Lecommandoux, S. & Chaikof, E. L. Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew. Chem. Int. Ed. Engl. 49, 4257–4260 (2010).
Article
CAS
PubMed
Google Scholar
Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).
Article
CAS
PubMed
Google Scholar
Dorr, B. M., Ham, H. O., An, C., Chaikof, E. L. & Liu, D. R. Reprogramming the specificity of sortase enzymes. Proc. Natl Acad. Sci. USA 111, 13343–13348 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon, H.-S. et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood 133, 2104–2108 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 10, 617 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Freeman, E. C., Weiland, L. M. & Meng, W. S. Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. J. Biomater. Sci. Polym. Ed. 24, 398–416 (2013).
Article
CAS
PubMed
Google Scholar
Hajimolaali, M. et al. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin. Drug Deliv. 18, 877–889 (2021).
Article
CAS
PubMed
Google Scholar
Nielsen, E. J. B. et al. In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J. Control. Release 189, 19–24 (2014).
Article
CAS
PubMed
Google Scholar
El-Sayed, A., Masuda, T., Khalil, I., Akita, H. & Harashima, H. Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J. Control. Release 138, 160–167 (2009).
Article
CAS
PubMed
Google Scholar
Rai, D. K. & Qian, S. Interaction of the antimicrobial peptide aurein 1.2 and charged lipid bilayer. Sci. Rep. 7, 3719 (2017).
Article
PubMed
PubMed Central
Google Scholar
Peterson, J. J. & Meares, C. F. Cathepsin substrates as cleavable peptide linkers in bioconjugates, selected from a fluorescence quench combinatorial library. Bioconjug. Chem. 9, 618–626 (1998).
Article
CAS
PubMed
Google Scholar
Biniossek, M. L., Nägler, D. K., Becker-Pauly, C. & Schilling, O. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J. Proteome Res. 10, 5363–5373 (2011).
Article
CAS
PubMed
Google Scholar
Abboud-Jarrous, G. et al. Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J. Biol. Chem. 283, 18167–18176 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Biswas, A. et al. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano 5, 1385–1394 (2011).
Article
CAS
PubMed
Google Scholar
Xie, J. et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front. Pharmacol. 11, 697 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Guterstam, P. et al. Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim. Biophys. Acta 1788, 2509–2517 (2009).
Article
CAS
PubMed
Google Scholar
Islam, M. Z., Ariyama, H., Alam, J. M. & Yamazaki, M. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Biochemistry 53, 386–396 (2014).
Article
CAS
PubMed
Google Scholar
Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).
Article
CAS
PubMed
Google Scholar
Sato, H. & Feix, J. B. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta 1758, 1245–1256 (2006).
Article
CAS
PubMed
Google Scholar
Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G. & Dowdy, S. F. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61, 474–477 (2001).
CAS
PubMed
Google Scholar
Kabelka, I. & Vácha, R. Advances in molecular understanding of α-helical membrane-active peptides. Acc. Chem. Res. 54, 2196–2204 (2021).
Article
CAS
PubMed
Google Scholar
Brock, D. J. et al. Mechanism of cell penetration by permeabilization of late endosomes: interplay between a multivalent TAT peptide and bis(monoacylglycero)phosphate. Cell Chem. Biol. 27, 1296–1307 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Guay, D., Del’Guidice, T. & Lepetit-Stoffaes, J.-P. Polypeptide-based shuttle agents for improving the transduction efficiency of polypeptide cargos to the cytosol of target eukaryotic cells, uses thereof, methods and kits relating to same. US patent US9738687B2 (2016).
Wang, G., Li, X. & Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016).
Article
CAS
PubMed
Google Scholar
Pirtskhalava, M. et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49, D288–D297 (2021).
Article
CAS
PubMed
Google Scholar
Tsai, C.-Y. et al. Helical structure motifs made searchable for functional peptide design. Nat. Commun. 13, 102 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Machida, S., Niimi, S., Shi, X., Ando, Y. & Yu, Y. Design of a novel membrane-destabilizing peptide selectively acting on acidic liposomes. Biosci. Biotechnol. Biochem. 64, 985–994 (2000).
Article
CAS
PubMed
Google Scholar
Slaninová, J. et al. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33, 18–26 (2012).
Article
PubMed
Google Scholar
Oh, J. H. et al. Multimeric amphipathic α-helical sequences for rapid and efficient intracellular protein transport at nanomolar concentrations. Adv. Sci. 5, 1800240 (2018).
Article
Google Scholar
Chong, S.-E. et al. Intracellular delivery of immunoglobulin G at nanomolar concentrations with domain Z-fused multimeric α-helical cell penetrating peptides. J. Control. Release 330, 161–172 (2021).
Article
CAS
PubMed
Google Scholar
Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277, 32157–32164 (2002).
Article
CAS
PubMed
Google Scholar
Zhang, S., Shen, J., Li, D. & Cheng, Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11, 614–648 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rilo-Alvarez, H., Ledo, A. M., Vidal, A. & Garcia-Fuentes, M. Delivery of transcription factors as modulators of cell differentiation. Drug Deliv. Transl. Res. 11, 426–444 (2021).
Article
CAS
PubMed
Google Scholar
Zhang, F. et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).
Article
CAS
PubMed
Google Scholar
Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).
Article
CAS
PubMed
Google Scholar
Hołubowicz, R. et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat. Biomed. Eng. 9, 57–78 (2025).
Article
PubMed
Google Scholar
Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02437-3 (2024).
Mónica Bravo-Anaya, L. et al. Coupling of RAFT polymerization and chemoselective post-modifications of elastin-like polypeptides for the synthesis of gene delivery hybrid vectors. Polym. Chem. 12, 226–241 (2021).
Article
Google Scholar
Bravo-Anaya, L. M. et al. Nucleic acids complexation with cationic elastin-like polypeptides: stoichiometry and stability of nano-assemblies. J. Colloid Interface Sci. 557, 777–792 (2019).
Article
CAS
PubMed
Google Scholar
Kelly, G. et al. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J. Control. Release 343, 267–276 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee, C. H., Ingrole, R. S. J. & Gill, H. S. Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165405 (2020).
Article
CAS
PubMed
Google Scholar
Piña, M. J. et al. A double safety lock tumor-specific device for suicide gene therapy in breast cancer. Cancer Lett. 470, 43–53 (2020).
Article
PubMed
Google Scholar
Del’Guidice, T. et al. Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR–Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE 13, e0195558 (2018).
Article
PubMed
PubMed Central
Google Scholar
Chow, D. C., Dreher, M. R., Trabbic-Carlson, K. & Chilkoti, A. Ultra-high expression of a thermally responsive recombinant fusion protein in E. coli. Biotechnol. Prog. 22, 638–646 (2006).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripathi, N. K. Production and purification of recombinant proteins from Escherichia coli. ChemBioEng Rev. 3, 116–133 (2016).
Article
Google Scholar
Schneier, M., Razdan, S., Miller, A. M., Briceno, M. E. & Barua, S. Current technologies to endotoxin detection and removal for biopharmaceutical purification. Biotechnol. Bioeng. 117, 2588–2609 (2020).
Article
CAS
PubMed
Google Scholar
Zhang, S., Sun, Y., Zhang, L., Zhang, F. & Gao, W. Thermoresponsive polypeptide fused l-asparaginase with mitigated immunogenicity and enhanced efficacy in treating hematologic malignancies. Adv. Sci. 10, 2300469 (2023).
Article
CAS
Google Scholar
Cheng, T.-F. et al. Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection. J. Immunol. 176, 7462–7470 (2006).
Article
CAS
PubMed
Google Scholar
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).
Article
PubMed
PubMed Central
Google Scholar
Xu, L., Liu, Y. & Han, R. BEAT: a Python program to quantify base editing from Sanger sequencing. CRISPR J. 2, 223–229 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Seluanov, A., Vaidya, A. & Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. J. Vis. Exp. 2010, 2033 (2010).
Angsana, J. et al. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler. Thromb. Vasc. Biol. 35, 332–340 (2015).
Article
CAS
PubMed
Google Scholar
Chen, J. et al. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Sci. Adv. 6, eaay8230 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran, N. T. et al. Efficient CRISPR/Cas9-mediated gene knockin in mouse hematopoietic stem and progenitor cells. Cell Rep. 28, 3510–3522 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bayes, H. K., Ritchie, N., Irvine, S. & Evans, T. J. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection. Sci. Rep. 6, 35838 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eweje, F. et al. Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins. GitHub https://github.com/sayoeweje/elp-eep-discovery (2025).