Home NATURALEZA Uniform volumetric single-cell processing for organ-scale molecular phenotyping

Uniform volumetric single-cell processing for organ-scale molecular phenotyping

4
0


  • Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, L. M., Ibarra-Lopez, V., Rost, S. & Ziai, J. Clinical and research applications of multiplexed immunohistochemistry and in situ hybridization. J. Pathol. 254, 405–417 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet. 17, 257–271 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwanhüusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article 

    Google Scholar
     

  • Prabakaran, S., Lippens, G., Steen, H. & Gunawardena, J. Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 565–583 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, Y.-G. G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. https://doi.org/10.1038/nbt.42813 (2018).

  • Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renier, N. et al. IDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arias, A., Manubens-Gil, L. & Dierssen, M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front. Mol. Neurosci. 15, 958222 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Susaki, E. A. et al. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat. Commun. 11, 1982 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. et al. Cellular and molecular probing of intact human organs. Cell 180, 796–812 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, H. M. et al. Antibody stabilization for thermally accelerated deep immunostaining. Nat. Methods 19, 1137–1146 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, T. et al. Elasticizing tissues for reversible shape transformation and accelerated molecular labeling. Nat. Methods 17, 609–613 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tainaka, K. et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159, 911–924 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, H. M. et al. Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat. Commun. 9, 1066 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518–1529 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gleave, J. A., Lerch, J. P., Henkelman, R. M. & Nieman, B. J. A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells. PLoS ONE 8, e72039 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sillitoe, R. V. & Hawkes, R. Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235–244 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dent, J. A., Polson, A. G. & Klymkowsky, M. W. A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 105, 61–74 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42, 617–627 (2023).

  • Kubota, S. I. et al. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Rep. 20, 236–250 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc. Natl Acad. Sci. USA 114, E7321–E7330 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean, K. M., Roudot, P., Welf, E. S., Danuser, G. & Fiolka, R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys. J. 108, 2807–2815 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, L. et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat. Biotechnol. 40, 364–373 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S.-Y. et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl Acad. Sci. USA 112, E6274–E6283 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlova, I. P., Shipley, S. C., Lanio, M., Hen, R. & Denny, C. A. Optimization of immunolabeling and clearing techniques for indelibly-labeled memory traces. Hippocampus 28, 523–535 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yau, C. N. et al. Principles of deep immunohistochemistry for 3D histology. Cell Rep. Methods 3, 100458 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakami, T. C. et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 21, 625–637 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, D. et al. Specific ion and buffer effects on protein–protein interactions of a monoclonal antibody. Mol. Pharm. 12, 179–193 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qualtiere, L. F., Anderson, A. G. & Meyers, P. Effects of ionic and nonionic detergents on antigen-antibody reactions. J. Immunol. 119, 1645–1651 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral, D. J., Hamilton, J. A. & Small, D. M. The ionization behavior of bile acids in different aqueous environments. J. Lipid Res. 27, 334–343 (1987).

    Article 

    Google Scholar
     

  • Esposito, G., Giglio, E., Pavel, N. V. & Zanobi, A. Size and shape of sodium deoxycholate micellar aggregates. J. Phys. Chem. 91, 356–362 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Makino, S., Reynolds, J. A. & Tanford, C. The binding of deoxycholate and Triton X 100 to proteins. J. Biol. Chem. 248, 4926–4932 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Proença, L. et al. Electrocatalytic oxidation of d-sorbitol on platinum in acid medium: analysis of the reaction products. J. Electroanal. Chem. 432, 237–242 (1997).

    Article 

    Google Scholar
     

  • Albanese, A. et al. Multiscale 3D phenotyping of human cerebral organoids. Sci. Rep. 10, 21487 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, D. S. et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat. Commun. 13, 1799 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valjent, E., Bertran-Gonzalez, J., Hervé, D., Fisone, G. & Girault, J.-A. Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci. 32, 538–547 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Brain-wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism. Cell 171, 456–469 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. et al. A platform for stereological quantitative analysis of the brain-wide distribution of type-specific neurons. Sci. Rep. 7, 14334 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanahira, C. et al. Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. Neurosci. Res. 63, 213–223 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigro, M. J., Kirikae, H., Kjelsberg, K., Nair, R. R. & Witter, M. P. Not all that is gold glitters: PV-IRES-Cre mouse line shows low efficiency of labeling of parvalbumin interneurons in the perirhinal cortex. Front. Neural Circuits 15, 781928 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc. Natl Acad. Sci. USA 115, 415–420 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heffner, C. S. et al. Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 3, 1218 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • von Engelhardt, J., Eliava, M., Meyer, A. H., Rozov, A. & Monyer, H. Functional characterization of intrinsic cholinergic interneurons in the cortex. J. Neurosci. 27, 5633–5642 (2007).

    Article 

    Google Scholar
     

  • Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L. et al. Optimizing nervous system-specific gene targeting with Cre driver lines: prevalenceof germline recombination and influencing factors. Neuron 106, 37–65 (2020).

    Article 

    Google Scholar
     

  • Swaney, J. et al. Scalable image processing techniques for quantitative analysis of volumetric biological images from light-sheet microscopy. Preprint at bioRxiv https://doi.org/10.1101/576595 (2019).

  • Tallini, Y. N. et al. BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol. Genomics 27, 391–397 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt-Supprian, M. & Rajewsky, K. Vagaries of conditional gene targeting. Nat. Immunol. 8, 665–668 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthaei, K. I. & Matthaei, K. I. Genetically manipulated mice: a powerful tool with unsuspected caveats. J. Physiol. 582, 481–488 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. J., Taniguchi, H., He, M. & Kuhlman, S. Genetic labeling of neurons in mouse brain. Cold Spring Harb. Protoc. 2014, 150–160 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Marín, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13, 107–120 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zikopoulos, B. & Barbas, H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front. Hum. Neurosci. 7, 609 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niwa, M. et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65, 480–489 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canty, A. J. et al. Regionalized loss of parvalbumin interneurons in the cerebral cortex of mice with deficits in GFRα1 signaling. J. Neurosci. 29, 10695–10705 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. et al. Integrated platform for multiscale molecular imaging and phenotyping of the human brain. Science 384, eadh9979 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caballero, A., Flores-Barrera, E., Cass, D. K. & Tseng, K. Y. Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence. Brain Struct. Funct. 219, 395–406 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caballero, A., Flores-Barrera, E., Thomases, D. R. & Tseng, K. Y. Downregulation of parvalbumin expression in the prefrontal cortex during adolescence causes enduring prefrontal disinhibition in adulthood. Neuropsychopharmacology 45, 1527–1535 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, F. et al. Thermal-plex: fluidic-free, rapid sequential multiplexed imaging with DNA-encoded thermal channels. Nat. Methods 21, 331–341 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellios, N. et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol. Psychiatry 23, 1051–1065 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tehrani-Bagha, A. R. & Holmberg, K. Solubilization of hydrophobic dyes in surfactant solutions. Materials 6, 580–608 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Podgorski, K., Terpetschnig, E., Klochko, O. P., Obukhova, O. M. & Haas, K. Ultra-bright and -stable red and near-infrared squaraine fluorophores for in vivo two-photon imaging. PLoS ONE 7, e51980 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, H. W. Allen Reference Atlas: A Digital Color Brain Atlas of the C57Bl/6J Male Mouse (Wiley, 2008).

  • Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Yun, D. H. et al. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. GitHub https://github.com/chunglabmit/eflash (2024).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here