Home NATURALEZA A structurally informed human protein–protein interactome reveals proteome-wide perturbations caused by disease...

A structurally informed human protein–protein interactome reveals proteome-wide perturbations caused by disease mutations

22
0


  • Nussinov, R., Jang, H., Nir, G., Tsai, C. J. & Cheng, F. Open structural data in precision medicine. Annu. Rev. Biomed. Data Sci. 5, 95–117 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Braberg, H., Echeverria, I., Kaake, R. M., Sali, A. & Krogan, N. J. From systems to structure—using genetic data to model protein structures. Nat. Rev. Genet. 23, 342–354 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vidal, M., Cusick, M. E. & Barabási, A.-L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, M. J. et al. Interactome INSIDER: a structural interactome browser for genomic studies. Nat. Methods 15, 107–114 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol. 30, 159–164 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng, F. et al. Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat. Genet. 53, 342–353 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sahni, N. et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161, 647–660 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wierbowski, S. D. et al. A 3D structural SARS-CoV-2-human interactome to explore genetic and drug perturbations. Nat. Methods 18, 1477–1488 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Burke, D. F. et al. Towards a structurally resolved human protein interaction network. Nat. Struct. Mol. Biol. 30, 216–225 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bianchi, F. M., Grattarola, D., Livi, L. & Alippi, C. Graph neural networks with convolutional ARMA filters. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3496–3507 (2022).

    PubMed 

    Google Scholar
     

  • Cho, K. et al. Learning phrase representations using rnn encoder–decoder for statistical machine translation. In Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1724–1734 (Association for Computational Linguistics, 2014).

  • Zhuang, F. et al. A comprehensive survey on transfer learning. Proc. of the IEEE 109, 43–76 (2021).

    Article 

    Google Scholar
     

  • Krapp, L. F., Abriata, L. A., Cortes Rodriguez, F. & Dal Peraro, M. PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces. Nat. Commun. 14, 2175 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tubiana, J., Schneidman-Duhovny, D. & Wolfson, H. J. ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction. Nat. Methods 19, 730–739 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sanchez-Garcia, R., Macias, J. R., Sorzano, C. O. S., Carazo, J. M. & Segura, J. BIPSPI+: mining type-specific datasets of protein complexes to improve protein binding site prediction. J. Mol. Biol. 434, 167556 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng, M. et al. Protein–protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36, 1114–1120 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Townshend, R. J. L., Bedi, R., Suriana, P. A. & Dror, R. O. End-to-end learning on 3D protein structure for interface prediction. 33rd Conference on Neural Information Processing Systems. https://proceedings.neurips.cc/paper_files/paper/2019/file/6c7de1f27f7de61a6daddfffbe05c058-Paper.pdf(NeurIPS, 2019).

  • Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction using graph convolutional networks. Advances in Neural Information Processing Systems 30. https://papers.nips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf (NIPS, 2017).

  • Lensink, M. F. & Wodak, S. J. Score_set: a CAPRI benchmark for scoring protein complexes. Proteins 82, 3163–3169 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article 

    Google Scholar
     

  • Das, J. & Yu, H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 6, 92 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salwinski, L. et al. The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, D857–D861 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Turner, B. et al. iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database 2010, baq023 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keshava Prasad, T. S. et al. Human protein reference database—2009 update. Nucleic Acids Res. 37, D767–D772 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mewes, H. W. et al. MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res. 39, D220–D224 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nelson, L. & Cox, M. Lehninger Principles of Biochemistry 7th edn (W.H. Freeman, 2017).

  • Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M. H. Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838 (1985).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Aftabuddin, M. & Kundu, S. Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys. J. 93, 225–231 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tsai, C. J., Lin, S. L., Wolfson, H. J. & Nussinov, R. Studies of protein–protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 6, 53–64 (1997).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ansari, S. & Helms, V. Statistical analysis of predominantly transient protein–protein interfaces. Proteins 61, 344–355 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Burley, S. K. et al. RCSB Protein Data Bank: celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci. 31, 187–208 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wei, X. et al. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. PLoS Genet. 10, e1004819 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, D., Lee, D., Li, L., Zhao, Q. & Yu, H. Implications of disease-related mutations at protein–protein interfaces. Curr. Opin. Struct. Biol. 72, 219–225 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stenson, P. D. et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 136, 665–677 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 18, e3000970 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Plasilova, M. et al. Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson–Gilford progeria syndrome. J. Med. Genet. 41, 609–614 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Favretto, F. et al. The molecular basis of the interaction of cyclophilin A with α-synuclein. Angew. Chem. Int. Ed. 59, 5643–5646 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. HIF2A germline–mutation-induced polycythemia in a patient with VHL-associated renal-cell carcinoma. Cancer Biol. Ther. 18, 944–947 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tarade, D., Robinson, C. M., Lee, J. E. & Ohh, M. HIF-2α-pVHL complex reveals broad genotype-phenotype correlations in HIF-2α-driven disease. Nat. Commun. 9, 3359 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • V, F. R. L. et al. Three novel EPAS1/HIF2A somatic and germline mutations associated with polycythemia and pheochromocytoma/paraganglioma. Blood 120, 2080 (2012).

    Article 

    Google Scholar
     

  • Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rabara, D. et al. KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis. Proc. Natl Acad. Sci. USA 116, 22122–22131 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat. Rev. Urol. 17, 339–350 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song, Y. et al. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol. Cancer 19, 2 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu, J. & Lin, D. I. Oncogenic c-terminal cyclin D1 (CCND1) mutations are enriched in endometrioid endometrial adenocarcinomas. PLoS ONE 13, e0199688 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, D. et al. Alterations in the transcriptional programs of myeloma cells and the microenvironment during extramedullary progression affect proliferation and immune evasion. Clin. Cancer Res. 26, 935–944 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, M. et al. CanProVar 2.0: an updated database of human cancer proteome variation. J. Proteome Res. 16, 421–432 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mészáros, B., Kumar, M., Gibson, T. J., Uyar, B. & Dosztányi, Z. Degrons in cancer. Sci. Signal. 10, eaak9982 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Q., Zhao, J., Chen, D. & Wang, Y. E3 ubiquitin ligases: styles, structures and functions. Mol. Biomed. 2, 23 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senft, D., Qi, J. & Ronai, Z. E. A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18, 69–88 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han, Y., Lee, H., Park, J. C. & Yi, G. S. E3Net: a system for exploring E3-mediated regulatory networks of cellular functions. Mol. Cell. Proteomics 11, O111.014076 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. UbiNet 2.0: a verified, classified, annotated and updated database of E3 ubiquitin ligase–substrate interactions. Database 2021, baab010 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene 22, 1486–1490 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yin, Q., Wyatt, C. J., Han, T., Smalley, K. S. M. & Wan, L. ITCH as a potential therapeutic target in human cancers. Semin. Cancer Biol. 67, 117–130 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, L. et al. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol. Cell. Biol. 24, 856–864 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tsai, W.-W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lv, D. et al. TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma. Nat. Commun. 8, 1454 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25, 162–171 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fukutomi, T., Takagi, K., Mizushima, T., Ohuchi, N. & Yamamoto, M. Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex Degron and Keap1. Mol. Cell. Biol. 34, 832–846 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049.e19 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abi-Habib, R. J. et al. BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin. Mol. Cancer Ther. 4, 1303–1310 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roberts, P. J. & Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Endres, N. F. et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543–556 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lu, C. F. et al. Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol. Cell. Biol. 30, 5432–5443 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liang, S. I. et al. Phosphorylated EGFR dimers are not sufficient to activate ras. Cell Rep. 22, 2593–2600 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bishayee, A., Beguinot, L. & Bishayee, S. Phosphorylation of tyrosine 992, 1068, and 1086 is required for conformational change of the human epidermal growth factor receptor C-terminal tail. Mol. Biol. Cell. 10, 525–536 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Siegelin, M. D. & Borczuk, A. C. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Invest. 94, 129–137 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hillig, R. C. et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc. Natl Acad. Sci. USA 116, 2551–2560 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • You, X. et al. Unique dependence on Sos1 in KrasG12D-induced leukemogenesis. Blood 132, 2575–2579 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hofmann, M. H. et al. Trial in process: phase 1 studies of BI 1701963, a SOS1::KRAS inhibitor, in combination with MEK inhibitors, irreversible KRASG12C inhibitors or irinotecan. Cancer Res. 81, CT210 (2021).

    Article 

    Google Scholar
     

  • Huijberts, S. C. F. A. et al. Phase I study of lapatinib plus trametinib in patients with KRAS-mutant colorectal, non-small cell lung, and pancreatic cancer. Cancer Chemother. Pharmacol. 85, 917–930 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cho, M. et al. A phase I clinical trial of binimetinib in combination with FOLFOX in patients with advanced metastatic colorectal cancer who failed prior standard therapy. Oncotarget 8, 79750–79760 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann, M. H. et al. BI-3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 11, 142–157 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, F., Yang, X., Geng, M. & Huang, M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm. Sin. B 8, 552–562 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, T. H. et al. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nat. Commun. 12, 1176 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Patelli, G. et al. Strategies to tackle RAS-mutated metastatic colorectal cancer. ESMO Open 6, 100156 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, Z.-N., Zhao, L., Yu, L.-F. & Wei, M.-J. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol. Rep. 8, 192–205 (2020).

    Article 

    Google Scholar
     

  • Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, Q. et al. The association between BRAF mutation class and clinical features in BRAF-mutant Chinese non-small cell lung cancer patients. J. Transl. Med. 17, 298 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caunt, C. J., Sale, M. J., Smith, P. D. & Cook, S. J. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat. Rev. Cancer 15, 577–592 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, K. L. et al. Regulated phosphosignaling associated with breast cancer subtypes and druggability. Mol. Cell. Proteomics 18, 1630–1650 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huttlin, E. L. et al. The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Petrey, D., Zhao, H., Trudeau, S. J., Murray, D. & Honig, B. PrePPI: a structure informed proteome-wide database of protein–protein interactions. J. Mol. Biol. 435, 168052 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao, Z. et al. Hierarchical graph learning for protein–protein interaction. Nat. Commun. 14, 1093 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pieper, U. et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 42, D336–D346 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Su, J. et al. SaProt: protein language modeling with structure-aware vocabulary. The Twelfth International Conference on Learning Representations. https://openreview.net/pdf?id=6MRm3G4NiU (ICLR, 2023).

  • Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gary, W. B. et al. The Alzheimer’s disease sequencing project: study design and sample selection. Neurol. Genet. 3, e194 (2017).

    Article 

    Google Scholar
     

  • Mosca, R., Céol, A. & Aloy, P. Interactome3D: adding structural details to protein networks. Nat. Methods 10, 47–53 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Velankar, S. et al. SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res. 41, D483–D489 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pierce, B. G. et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Scardapane, S., Van Vaerenbergh, S., Totaro, S. & Uncini, A. Kafnets: kernel-based non-parametric activation functions for neural networks. Neural Netw. 110, 19–32 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y., Golding, G. B. & Ilie, L. DELPHI: accurate deep ensemble model for protein interaction sites prediction. Bioinformatics 37, 896–904 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, J. & Kurgan, L. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Bioinformatics 35, i343–i353 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, B., Li, J., Quan, L., Chen, Y. & Lü, Q. Sequence-based prediction of protein–protein interaction sites by simplified long short-term memory network. Neurocomputing 357, 86–100 (2019).

    Article 

    Google Scholar
     

  • Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Walhout, A. J. M. & Vidal, M. High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 24, 297–306 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, E. L. et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xiong, D., Lee, D. & Liang, S. GitHub code repository for PIONEER. https://github.com/hyulab/PIONEER (2024).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here