Home NATURALEZA Model-directed generation of artificial CRISPR–Cas13a guide RNA sequences improves nucleic acid detection

Model-directed generation of artificial CRISPR–Cas13a guide RNA sequences improves nucleic acid detection

19
0


  • Jabado, O. J. et al. Greene SCPrimer: a rapid comprehensive tool for designing degenerate primers from multiple sequence alignments. Nucleic Acids Res. 34, 6605–6611 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreer, C. et al. openPrimeR for multiplex amplification of highly diverse templates. J. Immunol. Methods 480, 112752 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duitama, J. et al. PrimerHunter: a primer design tool for PCR-based virus subtype identification. Nucleic Acids Res. 37, 2483–2492 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodin, J. et al. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets. BMC Bioinform. 14, 255 (2013).

    Article 

    Google Scholar
     

  • Varliero, G., Wray, J., Malandain, C. & Barker, G. PhyloPrimer: a taxon-specific oligonucleotide design platform. PeerJ 9, e11120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metsky, H. C. et al. Designing sensitive viral diagnostics with machine learning. Nat. Biotechnol. 40, 1123–1131 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, A. & Zou, J. Feedback GAN for DNA optimizes protein functions. Nat. Mach. Intell. 1, 105–111 (2019).

    Article 

    Google Scholar
     

  • Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Article 

    Google Scholar
     

  • Shin, J.-E. et al. Protein design and variant prediction using autoregressive generative models. Nat. Commun. 12, 2403 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strokach, A. & Kim, P. M. Deep generative modeling for protein design. Curr. Opin. Struct. Biol. 72, 226–236 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taskiran, I. I. et al. Cell type directed design of synthetic enhancers. Nature 626, 212–220 (2024).

  • de Almeida, B. P. et al. Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo. Nature 626, 207–211 (2024).

  • Gosai, S. J. et al. Machine-guided design of synthetic cell type-specific cis-regulatory elements. Preprint at https://www.biorxiv.org/content/10.1101/2023.08.08.552077v1 (2023).

  • Zhao, D. et al. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Res. 50, 4161–4170 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arizti-Sanz, J. et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat. Biomed. Eng. 6, 932–943 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Killoran, N., Lee, L. J., Delong, A., Duvenaud, D. & Frey, B. J. Generating and designing DNA with deep generative models. Preprint at https://arxiv.org/abs/1712.06148 (2017).

  • Zrimec, J. et al. Controlling gene expression with deep generative design of regulatory DNA. Nat. Commun. 13, 5099 (2022).

  • Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porto, W. F. et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat. Commun. 9, 1490 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, R. Directed molecular evolution by machine learning and the influence of nonlinear interactions. J. Theor. Biol. 234, 187–199 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mantena S. et al. BADGERS: a package for designing artificial Cas13a diagnostic guides. GitHub https://github.com/broadinstitute/badgers-cas13 (2024).

  • Granados, A., Peci, A., McGeer, A. & Gubbay, J. B. Influenza and rhinovirus viral load and disease severity in upper respiratory tract infections. J. Clin. Virol. 86, 14–19 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dayarathna, S. et al. Are viral loads in the febrile phase a predictive factor of dengue disease severity? Preprint at https://www.medrxiv.org/content/10.1101/2023.07.31.23293412v1 (2023).

  • Yuan, L. et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358, 933–936 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apinjoh, T. O., Ouattara, A., Titanji, V. P. K., Djimde, A. & Amambua-Ngwa, A. Genetic diversity and drug resistance surveillance of plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa? Malar. J. 18, 217 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, T. E. et al. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti. Malar. J. 11, 275 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quan, H. et al. High multiple mutations of Plasmodium falciparum-resistant genotypes to sulphadoxine–pyrimethamine in Lagos, Nigeria. Infect. Dis. Poverty 9, 91 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida, N., Yamauchi, M., Morikawa, R., Hombhanje, F. & Mita, T. Increase in the proportion of Plasmodium falciparum with kelch13 C580Y mutation and decline in pfcrt and pfmdr1 mutant alleles in Papua New Guinea. Malar. J. 20, 410 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyde, J. E. Drug-resistant malaria. Trends Parasitol. 21, 494–498 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brookes, D., Park, H. & Listgarten, J. Conditioning by adaptive sampling for robust design. In Proc. 36th International Conference on Machine Learning (eds Chaudhuri, K. & Salakhutdinov, R.) vol. 97, 773–782 (PMLR, 2019).

  • Sinai, S. et al. AdaLead: a simple and robust adaptive greedy search algorithm for sequence design. Preprint at https://arxiv.org/abs/2010.02141 (2020).

  • Tambe, A., East-Seletsky, A., Knott, G. J., Doudna, J. A. & O’Connell, M. R. RNA binding and HEPN-nuclease activation are decoupled in CRISPR–Cas13a. Cell Rep. 24, 1025–1036 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meeske, A. J. & Marraffini, L. A. RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol. Cell 71, 791–801.e3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, N. L. et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 28, 1083–1094 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X., Yang, D., Zhang, J., Xu, J. & Chen, Y. E. Recent advances in improving gene-editing specificity through CRISPR–Cas9 nuclease engineering. Cells 11, 2186 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saha, K. Accounting for diversity in the design of CRISPR-based therapeutic genome editing. Nat Genet. 55, 6–7 (2023).

  • Shanehsazzadeh, A. et al. Unlocking de novo antibody design with generative artificial intelligence. Preprint at https://www.biorxiv.org/content/10.1101/2023.01.08.523187v1 (2023).

  • Goodfellow, I. J. et al. Generative adversarial networks. Preprint at https://arxiv.org/abs/1406.2661 (2014).

  • Mirza, M. & Osindero, S. Conditional generative adversarial nets. Preprint at https://arxiv.org/abs/1411.1784 (2014).

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. Improved training of Wasserstein GANs. Preprint at https://arxiv.org/abs/1704.00028 (2017).

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  • Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4, 533–543 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sinai, S. & Kelsic, E. D. A primer on model-guided exploration of fitness landscapes for biological sequence design. Preprint at https://arxiv.org/abs/2010.10614 (2020).

  • Abadi, M., et al. TensorFlow: large-scale machine learning on heterogeneous systems (2015).

  • Federhen, S. The NCBI taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shu, Y. & McCauley, J. GISAID: global initiative on sharing all influenza data—from vision to reality. Euro Surveil. 22, 30494 (2017).

    Article 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickett, B. E. et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 40, D593–D598 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodcroft, E. B. SARS-CoV-2 mutations and variants of interest. CoVariants https://covariants.org/ (2020).

  • Gangavarapu, K. et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat. Methods 20, 512–522 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here