Home NATURALEZA Non-pathogenic E. coli displaying decoy-resistant IL18 mutein boosts anti-tumor and CAR NK...

Non-pathogenic E. coli displaying decoy-resistant IL18 mutein boosts anti-tumor and CAR NK cell responses

15
0


  • Basudan, A. M. The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 13, 22–40 (2023).

  • Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laskowski, T. J., Biederstädt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

  • Granhøj, J. S. et al. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Exp. Opin. Biol. Ther. 22, 627–641 (2022).

  • Edwards, S. C., Hoevenaar, W. H. M. & Coffelt, S. B. Emerging immunotherapies for metastasis. Br. J. Cancer 124, 37–48 (2021).

  • Dahiya, D. S., Kichloo, A., Singh, J., Albosta, M. & Lekkala, M. Current immunotherapy in gastrointestinal malignancies: a review. J. Investig. Med. 69, 689–696 (2021).

  • Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

  • Mowday, A. M. et al. Advancing clostridia to clinical trial: past lessons and recent progress. Cancers 8, 63 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Luke, J. J. et al. Phase I study of SYNB1891, an engineered E. coli Nissle strain expressing STING agonist, with and without atezolizumab in advanced malignancies. Clin. Cancer Res. 29, 2435–2444 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tumas, S. et al. Engineered E. coli Nissle 1917 for delivery of bioactive IL-2 for cancer immunotherapy. Sci. Rep. 13, 12506 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badie, F. et al. Use of Salmonella bacteria in cancer therapy: direct, drug delivery and combination approaches. Front. Oncol. 11, 624759 (2021).

  • Chen, H. et al. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Mater. Today Bio 18, 100543 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aganja, R. P., Sivasankar, C., Senevirathne, A. & Lee, J. H. Salmonella as a promising curative tool against cancer. Pharmaceutics 14, 2100 (2022).

  • Raman, V. et al. Build-a-bug workshop: using microbial–host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 31, 1574–1592 (2023).

  • Zheng, J. H. et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, eaak9537 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Vincent, R. L. et al. Probiotic-guided CAR-T cells for solid tumor targeting. Science 382, 211–218 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., Du, M., Yuan, Z., Chen, Z. & Yan, F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat. Commun. 13, 4468 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X. et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat. Commun. 14, 1606 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittrup, K. D. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12, 395–399 (2001).

  • Lee, S. Y., Choi, J. H. & Xu, Z. Microbial cell-surface display. Trends Biotechnol. 21, 45–52 (2003).

  • Bryant, F. R. Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity. J. Biol. Chem. 263, 8716–8723 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scudamore, R. A., Beveridge, T. J. & Goldner, M. Outer-membrane penetration barriers as components of intrinsic resistance to beta-lactam and other antibiotics in Escherichia coli K-12. Antimicrob. Agents Chemother. 15, 182–189 (1979).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, 6–15 (2018).

    Article 

    Google Scholar
     

  • Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, M. J. & Lee, S. H. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT. FEMS Microbiol. Lett. 362, 1–7 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glass, D. S. & Riedel-Kruse, I. H. A synthetic bacterial cell–cell adhesion toolbox for programming multicellular morphologies and patterns. Cell 174, 649–658 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernández-Rollán, C. et al. LyGo: a platform for rapid screening of lytic polysaccharide monooxygenase production. ACS Synth. Biol. 10, 897–906 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 35, 218–24 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murthy, H., Iqbal, M., Chavez, J. C. & Kharfan-Dabaja, M. A. Cytokine release syndrome: current perspectives. Immunotargets Ther. 8, 43–52 (2019).

  • Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

  • Dagher, O. K. & Posey, A. D. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat. Immunol. 24, 1994–2007 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santomasso, B., Bachier, C., Westin, J., Rezvani, K. & Shpall, E. J. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity and financial burden. American Society of Clinical Oncology Educational Book https://doi.org/10.1200/edbk_238691 (2019).

  • Wang, Z. & Han, W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark. Res. 6, 4 (2018).

  • Dong, H. et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl Acad. Sci. USA 119, e2122379119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagerty, B. L. & Takabe, K. Biology of mesothelin and clinical implications: a review of existing literature. World J. Oncol. 14, 340–349 (2023).

  • Hirakawa, H., Haga, T. & Nagamune, T. Artificial protein complexes for biocatalysis. Top. Catal. 55, 1124–1137 (2012).

  • Delisa, M. P. & Conrado, R. J. Synthetic metabolic pipelines. Nat. Biotechnol. 27, 728–729 (2009).

  • Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, R. G., Walker, D. C. & Mclnnes, R. R. E. coli host strains. Nucleic Acids Res. 21, 1677–1678 (1993).

  • Chan, W. T., Verma, C. S., Lane, D. P. & Gan, S. K. E. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci. Rep. 33, e00086 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, D. F., Hobman, J. L. & Busby, S. J. W. Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Micro. Genom. 9, mgen000922 (2023).


    Google Scholar
     

  • Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54, 1393–1403 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faïs, T., Delmas, J., Barnich, N., Bonnet, R. & Dalmasso, G. Colibactin: more than a new bacterial toxin. Toxins 10, 151 (2018).

  • Jin, Y. & Fu, L. Engineer a double team of short-lived and glucose-sensing bacteria for cancer eradication. Cell Rep. Med. 4, 101043 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shrihari, T. G. Dual role of inflammatory mediators in cancer. Ecancermedicalscience 11, 721 (2017).

  • Knelson, E. H. et al. Activation of tumor-cell STING primes NK-cell therapy. Cancer Immunol. Res. 10, 947–961 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Y. et al. Self-assembled cGAMP-STINGΔTM signaling complex as a bioinspired platform for cGAMP delivery. Sci. Adv. 6, eaba7589 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X. et al. Engineering the immune adaptor protein STING as a functional carrier. Adv. Ther. https://doi.org/10.1002/adtp.202100066 (2021).

  • Sun, X. et al. Nanobody-functionalized cellulose for capturing SARS-CoV-2. Appl. Environ. Microbiol. 88, e0230321 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomar, S. et al. Development of highly effective anti-mesothelin hYP218 chimeric antigen receptor T cells with increased tumor infiltration and persistence for treating solid tumors. Mol. Cancer Ther. 21, 1195–1206 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 31, 1290–1295 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S. et al. Nonpathogenic E. coli Displaying Decoy-Resistant IL18 Mutein Enhance the Efficacy of Cancer Immunotherapies (NCBI, 2024); https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE275391



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here