Home NATURALEZA Coordinated, multicellular patterns of transcriptional variation that stratify patient cohorts are revealed...

Coordinated, multicellular patterns of transcriptional variation that stratify patient cohorts are revealed by tensor decomposition

15
0


  • Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat. Biotechnol. 40, 1467–1477 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez Flores, R. O., Lanzer, J. D., Dimitrov, D., Velten, B. & Saez-Rodriguez, J. Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease. eLife 12, e93161 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker, L. R. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008).

    Article 

    Google Scholar
     

  • Targ, S. Multiplexing droplet-based single cell RNA-sequencing using genetic barcodes. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96583 (2017).

  • Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez, R. K. et al. Multiplexed scRNA-seq reveals the cellular and genetic correlates of systemic lupus erythematosus. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174188 (2021).

  • Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nehar-Belaid, D., Flynn, W. F., Banchereau, J., Pascual, V. & Robson, P. A single cell approach to map cellular subsets involved in systemic lupus erythematosus (SLE) heterogeneity. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135779 (2020).

  • Hooks, J. J. et al. Immune interferon in the circulation of patients with autoimmune disease. New Engl. J. Med. 301, 5–8 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikpour, M., Dempsey, A. A., Urowitz, M. B., Gladman, D. D. & Barnes, D. A. Association of a gene expression profile from whole blood with disease activity in systemic lupus erythaematosus. Ann. Rheum. Dis. 67, 1069–1075 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weckerle, C. E. et al. Network analysis of associations between serum interferon α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 63, 1044–1053 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crow, M. K., Kirou, K. A. & Wohlgemuth, J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 36, 481–490 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, X. et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2951–2962 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwata, Y. et al. p38 mitogen-activated protein kinase contributes to autoimmune renal injury in MRL-Faslpr mice. J. Am. Soc. Nephrol. 14, 57–67 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, N. et al. The selective p38 mitogen-activated protein kinase inhibitor, SB203580, improves renal disease in MRL/lpr mouse model of systemic lupus. Int. Immunopharmacol. 11, 1319–1326 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azodi, C. B., Zappia, L., Oshlack, A. & McCarthy, D. J. splatPop: simulating population scale single-cell RNA sequencing data. Genome Biol. 22, 341 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klumpe, H. et al. The context-dependent, combinatorial logic of BMP signaling. Cell Syst. 13, 388–407 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodeller, F. & Schulze-Koops, H. The p38 mitogen-activated protein kinase signaling cascade in CD4 T cells. Arthritis Res. Ther. 8, 205 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wikenheiser, D. J. & Stumhofer, J. S. ICOS co-stimulation: friend or foe?. Front. Immunol. 7, 304 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katan, M. B. Apolipoprotein E isoforms, serum cholesterol and cancer. Lancet 1, 507–508 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fox, J., Kleiber, C., Zeileis, A. & Kuschnig, N. ivreg: instrumental-variables regression by ‘2SLS’, ‘2SM’, or ‘2SMM’, with diagnostics. The Comprehensive R Archive Network https://zeileis.github.io/ivreg/ (2023).

  • Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quach, H. et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell 167, 643–656 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Võsa, U. et al. Large-scale cis– and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chun, S. et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune disease-associated loci in three major immune cell types. Nat. Genet. 49, 600–605 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruikshank, W. W., Berman, J. S., Theodore, A. C., Bernardo, J. & Center, D. M. Lymphokine activation of T4+ T lymphocytes and monocytes. J. Immunol. 138, 3817–3823 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkler, M. S. et al. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFα response: a diagnostic tool for immunosuppression? PLoS ONE 12, e0182427 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olwal, C. O. et al. Parallels in sepsis and COVID-19 conditions: implications for managing severe COVID-19. Front. Immunol. 12, 91 (2021).

    Article 

    Google Scholar
     

  • Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spinetti, T. et al. Reduced monocytic human leukocyte antigen-DR expression indicates immunosuppression in critically ill COVID-19 patients. Anesth. Analg. 131, 993–999 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Wijst, M. G. P. et al. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 13, eabh2624 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barkas, N., Petukhov, V., Kharchenko, P. V. & Biederstedt, E. pagoda2: single cell analysis and differential expression. The Comprehensive R Archive Network https://github.com/kharchenkolab/pagoda2 (2021).

  • Li, J., Bien, J. & Wells, M. T. rTensor: an R package for multidimensional array (tensor) unfolding, multiplication, and decomposition. J. Stat. Softw. 87, 1–31 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sheehan, B. N. & Saad, Y. Higher order orthogonal iteration of tensors (HOOI) and its relation to PCA and GLRAM. In Proceedings of the 2007 SIAM International Conference on Data Mining (eds Apte, C., Liu, B., Parthasarathy, S. & Skillicorn, D) (Society for Industrial and Applied Mathematics, 2007).

  • Kolda, T. G. & Bader, B. W. Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009).

    Article 

    Google Scholar
     

  • Unkel, S., Hannachi, A., Trendafilov, N. T. & Jolliffe, I. T. Independent component analysis for three-way data with an application from atmospheric. J. Agric. Biol. Environ. Stat. 16, 319–338 (2011).

    Article 

    Google Scholar
     

  • Zhou, G. & Cichocki, A. Fast and unique tucker decompositions via multiway blind source separation. Bull. Pol. Acad. Sci. Tech. Sci. 60, 389–405 (2012).


    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Badea, L. Extracting gene expression profiles common to colon and pancreatic adenocarcinoma using simultaneous nonnegative matrix factorization. Pac. Symp. Biocomput. 2008, 267–278 (2008).


    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchel, J., Biederstedt, E. & Kharchenko, P. V. Single-cell analysis of inter-individual variability by interpretable tensor decomposition. GitHub https://github.com/kharchenkolab/scITD (2024).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here